• Title/Summary/Keyword: Interfacial properties

Search Result 1,129, Processing Time 0.038 seconds

A Study on the joining of $Al_2$$O_3$ to STS304 with using Cu-Ti Insert metal (Cu-Ti삽입금속을 이용한 $Al_2$$O_3$-STS304접합체 계면조직에 관한 연구)

  • Kim, Byeong-Mu;Sin, Sun-Beom;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.33-42
    • /
    • 1993
  • Abstract The increasing application of $Al_2$,$O_3$ and related ceramics as engineering materials is because of their attractive properties of fine ceramics. One solution to the wide variety of ceramic to metal combination lies in the effective joining. Active metal brazing of $Al_2$,$O_3$, to STS304 was investigated using Cu -Ti alloys. Titanium additive is chosen since it is good oxide former~. Brazing is performed under vacuum($10^{-3}$-$10^{-4}$ torr), a temperature between 1100 and 120$0^{\circ}C$ and time of 0.5-1.5hr. The microstructure of the brazed joints of $Al_2$,$O_3$ to STS304 with Cu-Ti insert metals were examined by using optical microscope and SEM and reaction products were analyzed by using EDX, WDX and XRD. Also interfacial reactions occuring during the brazing of $Al_2$,$O_3$/Cu-Ti/STS304 system are discussed. Experimental results showed formation of Titanium oxide T$i_2$$O_3$ which is attributable to the joining $Al_2$,$O_3$ to STS304 with Cu-Ti insert metal.

  • PDF

Preparation of Isophorone Diisocyanate-loaded Microcapsules and Their Application to Self-healing Protective Coating (Isophorone Diisocyanate 함유 마이크로캡슐의 제조와 자기치유형 보호코팅재에의 응용)

  • Lim, Ye-Ji;Song, Young-Kyu;Kim, Dong-Min;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • The object of this study is to prepare microcapsules containing a diisocyanate compound, apply them to self-healing protective coating, and evaluate the self-healing capability of the coating by atmospheric moisture. Isophorone diisocyanate (IPDI) polymerized under humid atmosphere, indicating that IPDI can be used as a healing agent. Microencapsulations of IPDI were conducted via interfacial polymerization of a polyurethane prepolymer with diol compounds. The formation of microcapsules was confirmed by Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The mean diameter, size distribution, morphology and shell wall thickness of microcapsules were investigated by optical microscopy and scanning electron microscopy (SEM). The properties of microcapsules were studied by varying agitation rates and diol structure. The self-healing coatings were prepared on test pieces of CRC board. When scratch was generated in the coatings, the core material flew out of the microcapsules and filled the scratch. The self-healing coatings were damaged and healed under atmosphere with 68~89% relative humidity for 48 h, and SEM and impermeability test for the specimens showed that the scratch could be healed by atmospheric moisture.

Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni1/3Co1/3Mn1/3)O2/Graphite Cells (LiBOB 전해액 첨가제 도입에 따른 Li(Ni1/3Co1/3Mn1/3)O2/graphite 전지의 고온특성)

  • Jeong, Jiseon;Lee, Hyewon;Lee, Hoogil;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.58-67
    • /
    • 2015
  • The effects of electrolyte additives, lithium bis(oxalate)borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA), on high-temperature storage properties of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite are investigated with coin-type full cells. The 1 wt.% LiBOB-containing electrolyte showed the highest capacity retention after high temperature ($60^{\circ}C$) storage for 20 days, 86.7%, which is about 5% higher than the reference electrolyte, 1.15M lithium hexafluorophosphate ($LiPF_6$) in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume). This enhancement is closely related to the formation of semi-carbonate compounds originated from $BOB^-$ anions, thereby resulting in lower SEI thickness and interfacial resistance after storage. In addition, the 1 wt.% LiBOB-containing electrolyte also exhibited better cycle performance at 25 and $60^{\circ}C$ than the reference electrolyte, which indicates that LiBOB is an effective additive for high-temperature performance of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite chemistry.

Thermomechanical Characteristics of Poly(vinyl alcohol)/Chitosan Films and Its Blend Hydrogels (폴리(비닐 알코올)/키토산 블렌드와 블렌드 수화젤의 열특성)

  • Park Jun Seo;Park Jang Woo;Kim Byung Ho
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.183-189
    • /
    • 2005
  • Films of poly(vinyl alcohol)(PVA)/chitosan blends and its blend hydrogels were prepared by the solution casting method. The state of miscibility of the blends and blend hydrogels were examined over the entire composition range by differential scanning carorimetry (DSC), thermogravimetry (TGA), and dynamic mechanical analysis (DMA). DSC analysis shows the depression of melting point of PVA in the blends and the decrease of crystallization temperature of PVA in the blends were observed with increasing chitosan content in the blends. TGA analysis indicates that chitosan was thermally more stable than PVA and the thermal stability of PVA in the blends was higher than that of pure PVA, due to some interactions between two component polymers in the blend. The glass transition temperature $(T_g)$ of the chitosan and of PVA, measured by DMA, were at 160 and $90^{\circ}C$, respectively. The $T_g$ of the blends was changed with the content of chitosan in the blends. The results of thermal and viscoelastic analysis indicate some miscibility between component polymers in the blend exists. Moisture and cross linking in the blend and blend hydrogel, which strongly change thermal and physical properties of hydrophilic polymers, affected the miscibility of chitosan and PVA to a small extent.

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF

Development of Key Technologies for Large Area Forming of Micro Pattern (대면적 미세 성형공정 원천기술 개발)

  • Choi, Doo-Sun;Yoo, Yeong-Eun;Yoon, Jae-Sung;Je, Tae-Jin;Park, Si-Hwan;Lee, Woo-Il;Kim, Bong-Gi;Jeong, Eun-Jeong;Kim, Jin-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.777-782
    • /
    • 2011
  • Micro features on the surface are well-known to have significant effects on optical or mechanical properties such as the optical interference, reflectance at the surface, contact angle, interfacial friction, etc. These surface micro features are increasingly employed to enhance the functionality of the applications in various application areas such as optical components for LCD or solar panel. Diverse surface features have been proposed and some of them are showing excellent efficiency or functionality, especially in optical applications. Most applications employing the micro features need manufacturing process for mass production and the injection molding and roll-to-roll forming, which are typical processes for mass production adopting polymeric materials, may be also preferred for micro patterned plastic product. Since the functionality or efficiency of the surface structures generally depends on the shape and the size of the structure itself or the array of the structures on the surface, it would be very important to replicate the features very precisely as being designed during the molding the micro pattern applications. In this paper, a series of research activities is introduced for roll-to-roll forming of micro patterned film including filling of patterns with UV curable resin, demolding of surface structures from the roll tool, control of surface energy and cure shrinkage of resin and dispose time and intensity of the UV light for curing of UV curable resin.

Characteristics of sulfur hexafluoride hydrate film growth at the vapor/liquid interface (기상/액상 계면에서의 SF6 하이드레이트 필름 성장거동 연구)

  • Kim, Soo-Min;Lee, Hyun-Ju;Lee, Bo-Ram;Lee, Yoon-Seok;Lee, Eun-Kyung;Lee, Ju-Dong;Kim, Yang-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • $SF_6$ gas has been widely used in many industrial fields as insulating, cleaning and covering gases due to its outstanding arc-extinguishing and insulating properties. However, global warming potential of $SF_6$ gas is 23,900 times more than that of $CO_2$ and it remains in the air during 3,200 years. For these reason, technological and economical effects could be expected for the separation of $SF_6$ from gas mixtures by hydrate forming process. In this study, we carried out morphological studies for the $SF_6$ hydrate crystal to understand its formation and growth mechanisms. $SF_6$ hydrate film was initially formed at the interfacial boundary between gas and liquid regions, and then subsequent dendrite crystals growth was observed. The dendrite crystals grew to the direction of gas region probably due to the guest gas concentration gradient. The detailed growth characteristics of $SF_6$ hydrate crystals such as nucleation, migration, growth and interference were discussed in this study.

Mechanical Properties of Strain-Hardening Cement Composites(SHCCs) according to the Water-Cement Ratio (물시멘트비에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Kim, Yun-Su;Jang, Yong-Heon;Jang, Gwang-Su;Jeon, Esther;Yun, Hyun-Do;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.465-468
    • /
    • 2008
  • SHCCs (Strain Hardening Cement Composites) show the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCCs, it is needed to investigate the compression, four-point bending, direct tensile response of SHCCs with different types of fibers and water-cement ratio. For these purposes, three kinds of fibers were used: PP(polypropylene, 2.0%), PVA(Polyvinyl alcohol, 2.0%), PE (Polyethylene, 1.0%). Also, effects of water-cement ratio(0.45, 0.60) on the SHCCs were evaluated in this paper. As the result of test, SHCCs with PVA and PE fiber were showed better overall behavior than specimens with PP fibers on bending and direct tensile test. Also, for the same type of fiber, SHCCs with water-cement ratio of 0.45 exhibited higher ultimate strength than specimen with water-cement ratio of 0.60 on compression strength, and showed the multiple cracking on bending and direct tensile test. Therefore, to improve of workability and dispersibility of SHCCs on water-cement ratio of 0.60, continual studies were needed.

  • PDF

Unsteady Mass Transfer Around Single Droplet Accompanied by Interfacial Extraction Reaction of Succinic Acid (숙신산 추출반응이 일어나는 단일 액적계에서의 비정상상태 물질 전달)

  • Jeon, Sangjun;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1021-1026
    • /
    • 2012
  • The transient mass transfer in a single droplet system consisting of 1-octanol (continuous phase)/aqueous succinic acid solution (dispersed phase) was investigated in the presence of chemical reaction, which is acid/anion exchange reaction of succinic acid and tri-n-octylamine (TOA). This succinic acid extraction by TOA can be considered to occur at the interface between organic and aqueous phase, that is, heterogeneous reaction system. The basic properties of the system such as viscosity, density, distribution coefficient, terminal velocity of droplet, and diffusion coefficient were measured experimentally or calculated theoretically, and used for theoretical calculation of characteristic parameters of mass transfer later. The effects of succinic acid concentration on the terminal velocity was negligible in the existence of TOA, although the terminal velocity increases with succinic acid concentration in the absence of TOA. On the contrary, the terminal velocity decreases with TOA concentration. While droplets falls through organic phase, the trajectory of droplets is observed to oscillate around its vertical path. A mass trnasfer cell was prepared to monitor the mass transfer behavior in a single droplet and used to measure the mean concentration of succinic acid inside droplet. The results are expressed with dimensionless parameters. Under 50 g/L succinic acid condition, the system with 0.1 mol/kg TOA showed that the molar flux decreases in proportion to the decrease of concentration gradient, while in the case of 0.5 mol/kg TOA Sh increases rapidly with time indicating the molar flux of succinic acid decreases relatively slowly compared to the decrease in concentration gradient.

A STUDY ON THE REMOVAL TORQUE OF TITANIUM IMPLANTS (Titanium Implant의 Removal Torque에 관한 연구)

  • Lee, June-Seok;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.148-169
    • /
    • 1994
  • The concept of biologic attachment of load-bearing implants has developed over the past decades as an alternative to the difficulties associated with long term implantation using mechanical fixation and bone cement. The choice of implant material is also as critical an element as site preparation or insertion procedure. The properties of implants that affect host tissue responses are not limited to chemical composition alone, but also include shape, surface characteristics, site of implantation, and mechanical interaction with host tissues. Initial mechanical interlocking prevents micromotion and may be a prerequisite for direct bone apposition. A hard tightening of screws does not necessarily mean a stronger fixation and final tightening of the fixtures is dependent on the experience of the operator. Removal torque is lower than insertion torque. The purpose of this study was to investigate differences in the removal torques at the bone-implant interface of polished and sandblasted Titanium. This experiment will give insight into important factors that must be considered when interpreting in vivo screwing forces on implants during the connection of the transmucosal abutments. We evaluated the significance of different surface textures by comparison of the withdrawal forces necessary for removal of otherwise identical rough and polished implants of Titanium and also evaluated interfacial response on the light microscopic level to implant surface. And the priority of the area of insertion on osseointegration were evaluated. 9 Titanium implants - among them, 3 were for the developmental - of either a smooth or rough surface finish were inserted in the dog mandible in the right side. 3 months later Kanon Torque Gauge was used to unscrew the implants. The results were as follows : 1. No significant difference was seen in the removal torque due to variation in surface treatment, 23 Ncm for the sandblasted and 23.33 Ncm for the polished surface (p>0.05). 2. Implants in the anterior (25 Ncm) mandible showed better resistance to unscrewing in comparison to ones in the posterior (18 Ncm) region (p<0.05). 3. Developmental fixtures (22 Ncm) had similar pullout strength to the control group (p>0.05).

  • PDF