• Title/Summary/Keyword: Interfacial Zone

Search Result 125, Processing Time 0.028 seconds

Toughening of SiC Whisker Reinforced Al2O3 Composite (SiC 휘스커 강화 Al2O3 복합재료의 고인화)

  • Kim Yon Jig;Song Jun Hee
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

Sustainable self compacting acid and sulphate resistance RAC by two stage mixing approaches

  • Rajhans, Puja;Kisku, Nishikant;Nayak, Sanket;Panda, Sarat Kumar
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.55-70
    • /
    • 2020
  • In this research article, acid resistance, sulphate resistance and sorptivity of self compacted concrete (SCC) prepared from C&D waste have been discussed. To improve the above properties of self compacted recycled aggregate concrete (SCRAC) along with mechanical and durability properties, different two stage mixing approaches (TSMA and TSMAsfc) were followed. In the proposed two stage mixing approach (TSMAsfc), silica fume, a proportional amount of cement and a proportional amount of water were mixed in premix stage which fills the pores and cracks of recycled aggregate concrete (RAC). The concrete specimen prepared using above mixing approaches were immersed in 1% concentration of sulphuric acid (H2SO4) and magnesium sulphate (MgSO4) solution for 28, 90 and 180 days for evaluating the acid resistance of SCRAC. Experimental results concluded that the proposed two stage mixing approach (TSMAsfc) is most suitable for acid resistance and sulphate resistance in terms of weight loss and strength loss due to the elimination of pores and cracks in the interfacial transition zone (ITZ). In modified two stage mixing approach, the pores and cracks of recycled concrete aggregate (RCA) were filled up and make ITZs of SCRAC stronger. Microstructure analysis was carried out to justify the reason of improvement of ITZs by electron probe micro analyser (EPMA) analysis. X-ray mapping was also done to know the presence of strength contributing elements presents in the concrete sample. It was established that SCRAC with modified mixing approach have shown improved results in terms of acid resistance, sulphate resistance, sorptivity and mechanical properties.

The effective properties of saturated concrete healed by EDM with the ITZs

  • Chen, Qing;Jiang, Zhengwu;Zhu, Hehua;Ju, J.W.;Yan, Zhiguo;Li, Haoxin
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • A differential scheme based micromechanical framework is proposed to obtain the effective properties of the saturated concrete repaired by the electrochemical deposition method (EDM) considering the interfacial transition zone (ITZ) effects. The constituents of the repaired concrete are treated as different phases, consisting of (micro-)cracks, (micro-)voids and (micro-)pores (occupied by water), deposition products, intrinsic concrete made up by the three traditional solid phases (i.e., mortar, coarse aggregates and their interfaces) and the ITZs. By incorporating the composite sphere assemblage (CSA) model and the differential approach, a new multilevel homogenization scheme is utilized to quantitatively estimate the mechanical performance of the repaired concrete with the ITZs. The CSA model is modified to obtain the effective properties of the equivalent particle, which is a three-phase composite made up of the water, deposition products and the ITZs. The differential scheme is employed to reach the equivalent composite of the concrete repaired by EDM considering the ITZ effects. Moreover, modification procedures considering the ITZ effects are presented to attain the properties of the repaired concrete in the dry state. Results in this study are compared with those of the existing models and the experimental data. It is found that the predictions herein agree better with the experimental data than the previous models.

A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure (기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성)

  • Park, Heung-Il;Kim, Chang-Up;Huh, Bo-Young;Lee, Sung-Youl;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

Conduction Properties of NitAI Ohmic Contacts to AI-implanted p-type 4H-SiC (AI 이온 주입된 p-type 4H-SiC에 형성된 Ni/AI 오믹접촉의 전기 전도 특성)

  • Joo, Seong-Jae;Song, Jae-Yeol;Kang, In-Ho;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Lee, Yong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.717-723
    • /
    • 2009
  • Ni/Al ('/' denotes deposition sequence) contacts were deposited on Al-implanted 4H-SiC for ohmic contact formation, and the conduction properties were characterized and compared with those of Ni-only contacts. The thicknesses of the Ni and Al thin film were 30 nm and 300 nm, respectively, and the films were sequentially deposited bye-beam evaporation without vacuum breaking. Rapid thermal anneal (RTA) temperature was varied as follows : $840^{\circ}C$, $890^{\circ}C$, and $940^{\circ}C$. The specific contact resistivity of the Ni contact was about $^{\sim}2\;{\pm}\;10^{-2}\;{\Omega}{\cdot}cm^2$, However, with the addition of Al overlayer, the specific contact resistivity decreased to about $^{\sim}2\;{\pm}\;10^{-4}\;{\Omega}{\cdot}cm^2$, almost irrespective of RTA temperature. X-ray diffraction (XRD) analysis of the Ni contact confirmed the existence of various Ni silicide phases, while the results of Ni/Al contact samples revealed that Al-contaning phases such as $Al_3Ni$, $Al_3Ni_2$, $Al_4Ni_3$, and $Ab_{3.21}Si_{0.47}$ were additionally formed as well as the Ni silicide phases. Energy dispersive spectroscopy (EDS) spectrum showed interfacial reaction zone mainly consisting of Al and Si at the contact interface, and it was also shown that considerable amounts of Si and C have diffused toward the surface. This indicates that contact resistance lowering of the Ni/Al contacts is related with the formation of the formation of interfacial reaction zone containing Al and Si. From these results, possible mechanisms of contact resistance lowering by the addition of Al were discussed.

Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete (라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구)

  • Kim, Seong-Hwan;Yun, Kyong-Ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.503-510
    • /
    • 2009
  • Latex modified concrete (LMC) is a successful polymer-portland cement concretes, which have been developed and used for many years, in overlaying bridge decks and resurfacing industrial floors. The excellent bond strength to substrate, easy application and high resistance to impact, abrasion, wear, aggressive chemicals and freeze-thaw deterioration have made this material used widely. The objective of this study was to determine experimentally the load-deflection response and ultimate strength of reinforced RC beams. The cracking patterns and the mode of failure were observed. Because of excellent bond strength and repairing effects, the RC beams repaired by LMC at compression or tension zone showed over 100% recovery from damaged structures. The RC beams overlaid by LMC showed significant improvement at load carrying capacity as overlay thickness increases. However, the beams repaired of tension zone without shear stirrups almost showed no strengthen effect, and indicated an interfacial failures. The interfacial behavior was estimated by numerical method adopting the concept of shear flow.

Investigation of Electrical Resistance Properties in Surface-Coated Lightweight Aggregate (표면코팅 경량골재의 전기저항 특성)

  • Kim, Ho-Jin;Kim, Chang-Hyun;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.727-738
    • /
    • 2023
  • In concrete, the interface between the aggregate and cement paste is often the most critical factor in determining strength, representing the weakest zone. Lightweight aggregate, produced through expansion and firing of raw materials, features numerous surface pores and benefits from low density; however, its overall aggregate strength is compromised. Within concrete, diminished aggregate strength can lead to aggregate fracture. When applying lightweight aggregate to concrete, the interface strength becomes critical due to the potential for aggregate fracture. This study involved coating the surface of the aggregate with blast furnace slag fine powder to enhance the interfacial strength of lightweight aggregate. The impedance of test specimens was measured to analyze interface changes resulting from this surface modification. Experimental results revealed a 4% increase in compressive strength following the coating of the lightweight aggregate surface, accompanied by an increase in resistance values within the impedance measurements corresponding with strength enhancement.

Characteristics of Electric Resistance Dual Spot Welding Process of AZ31 Magnesium Alloy Sheets (AZ31 마그네슘 합금 판재의 전기저항 이중 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, an electric resistance dual-spot welding process using a copper electrode inserted in a heating electrode is suggested for the spot welding of AZ31 magnesium sheets. This spot-welding process involves two heating methods for welding at the interfacial zone between the magnesium sheets, one of which is the heating method by thermal conduction from the heating electrode heated by the welding current induced to the steel electrode, and the other heating method uses the electric resistance between the contacted surfaces of the two sheets by the welding current induced to the copper electrode. This welding process includes the welding variables, such as the current induced in the heating electrode and the copper electrode, and the outer diameters of the heating electrode. This is because the heat conducted from the heating electrode can be maintained at a higher temperature in the welding zone, which has a slow cooling effect on the nugget of the melted metal after the welding step. The pressure exerted during the pressing of the magnesium sheets by the heating electrode can be increased around the nugget zone at the spot-welding zone. Thus, it not only reduces the warping effect of the elastoplastic deformation of sheets, but also the corona bond can make it less prone to cracking at the welded zone, thereby reducing the number of nuggets expelled out of the corona bond. In conclusion, it was known that an electric resistance dual spot welding process using the copper electrode inserted in the heating electrode can improve the welding properties in the electric resistance spot welding process of AZ31 magnesium sheets.

Crack behaviour of top layer in layered rocks

  • Chang, Xu;Ma, Wenya;Li, Zhenhua;Wang, Hui
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • Open-mode cracks could be commonly observed in layered rocks. A concept model is firstly used to explore the mechanism of the vertical cracks (VCs) in the top layer. Then the crack behaviour of the two-layer model is simulated based on a cohesive zone model (CZM) for layer interfaces and a plastic-damage model for rocks. The model indicates that the tensile stress normal to the VCs changes to compression if the crack spacing to layer thickness ratio is lower than a threshold. The results indicate that there is a threshold for interfacial shear strength that controls the crack patterns of the layered system. If the shear strength is lower than the threshold, the top layer is meshed by the VCs and interfacial cracks (ICs). When the shear strength is higher than the threshold, the top layer is meshed by the VCs and parallel cracks (PCs). If the shear strength is comparative to the threshold, a combining pattern of VCs, PCs and ICs for the top layer can be formed. The evolutions of stress distribution in the crack-bound block indicate that the ICs and PCs can reduce the load transferred for the substrate layer, and thus leads to a crack saturation state.

Numerical and statistical analysis of permeability of concrete as a random heterogeneous composite

  • Zhou, Chunsheng;Li, Kefei
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.469-482
    • /
    • 2010
  • This paper investigates the concrete permeability through a numerical and statistical approach. Concrete is considered as a random heterogeneous composite of three phases: aggregates, interfacial transition zones (ITZ) and matrix. The paper begins with some classical bound and estimate theories applied to concrete permeability and the influence of ITZ on these bound and estimate values is discussed. Numerical samples for permeability analysis are established through random aggregate structure (RAS) scheme, each numerical sample containing randomly distributed aggregates coated with ITZ and dispersed in a homogeneous matrix. The volumetric fraction of aggregates is fixed and the size distribution of aggregates observes Fuller's curve. Then finite element method is used to solve the steady permeation problem on 2D numerical samples and the overall permeability is deduced from flux-pressure relation. The impact of ITZ on overall permeability is analyzed in terms of ITZ width and contrast ratio between ITZ and matrix permeabilities. Hereafter, 3680 samples are generated for 23 sample sizes and 4 contrast ratios, and statistical analysis is performed on the permeability dispersion in terms of sample size and ITZ characteristics. By sample theory, the size of representative volume element (RVE) for permeability is then quantified considering sample realization number and expected error. Concluding remarks are provided for the impact of ITZ on concrete permeability and its statistical characteristics.