• Title/Summary/Keyword: Interfacial Strains

Search Result 14, Processing Time 0.022 seconds

Synthesis, interfacial properties, and antimicrobial activity of a new cationic gemini surfactant

  • Maneedaeng, Atthaphon;Phoemboon, Sakonwan;Chanthasena, Panjamaphon;Chudapongse, Nuannoi
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2313-2320
    • /
    • 2018
  • Tetramethylene-1,4-bis(N,N-dodecylammonium bromide), cationic gemini surfactant, (12-4-12) was first synthesized with an one-step and shortened procedure and its interfacial and antimicrobial properties were compared with a conventional single-chain cationic surfactant, cetyltrimethylammonium bromide (CTAB). The interfacial and thermodynamic properties of both surfactants reveal that critical micelle concentration (CMC) of this novel synthetic cationic dimeric surfactant is lower than that of cationic monomeric surfactant at almost 15 times of its magnitude, which is due to the increase in hydrophobicity of the surfactant molecules by having dual hydrocarbon chains. In comparison with CTAB, the produced compound 12-4-12 yields much better interfacial and thermodynamic properties. The antimicrobial activities of the synthesized gemini surfactant were tested against eight strains of bacteria, as well as two strains of fungi. The results showed that both 12-4-12 compound and CTAB exhibited higher inhibitory effects on the growth of Gram-positive bacteria and fungi than that of Gram-negative bacteria. The minimum inhibitory concentrations in molar of 12-4-12 against all tested Gram-negative bacteria were lower than those of CTAB, which is hypothetically due to the lower HLB together with smaller CMC values of our gemini surfactant.

Interfacial Strain Distribution of a Unidirectional Composite with Randomly Distributed Fibers (불규칙 섬유배열을 가진 일방향 복합재료의 경계면 변형률 분포 해석)

  • Ha Sung-Kyu;Jin Kyo-Kook;Oh Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.260-268
    • /
    • 2006
  • The micromechanical approach was used to investigate the interfacial strain distributions of a unidirectional composite under transverse loading in which fibers were usually found to be randomly packed. Representative volume elements (RVE) for the analysis were composed of both regular fiber arrays such as a square array and a hexagonal array, and a random fiber array. The finite element analysis was performed to analyze the normal, tangential and shear strains at the interface. Due to the periodic characteristics of the strain distributions at the interface, the Fourier series approximation with proper coefficients was utilized to evaluate the strain distributions at the interface for the regular and random fiber arrays with respect to fiber volume fractions. From the analysis, it was found that the random arrangement of fibers had a significant influence on the strain distribution at the interface, and the strain distribution in the regular fiber arrays was one of special cases of that in the random fiber array.

Interfacial stress assessment at the cracked zones in CFRP retrofitted RC beams

  • Hojatkashani, Ata;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.705-733
    • /
    • 2012
  • In this work, an experimental examination was carried out to study interfacial stresses developed at the junction zones between carbon fiber reinforced plastic (CFRP) fabrics (~1 mm thickness) and tensile concrete portion in CFRP retrofitted RC beams. In this respect, initially six similar RC beams of $150{\times}150{\times}1000mm$ dimensions were prepared. Three of which were strengthened with CFRP fabrics at the tensile side of the beams. Furthermore, a notch was cut at the center of the bottom surface for all of the studied beams. The notch was 15 mm deep and ran across the full width of tension side of the beams. The mentioned interfacial stresses could be calculated from strains measured using strain gauges mounted on the interface zone of the tensile concrete and the CFRP sheet. Based on the results obtained, it is shown that interfacial stresses developed between CFRP fabrics and RC beam had a noticeable effect on debonding failure mode of the latter. The load carrying capacity of CFRP strengthened RC specimens increased ~75% compared to that of the control RC beams. This was attributed to the enhancement of flexural mode of the former. Finally, finite element analysis was also utilized to verify the measured experimental results.

Anisotropic, non-uniform misfit strain in a thin film bonded on a plate substrate

  • Huang, Y.;Ngo, D.;Feng, X.;Rosakis, A.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.123-142
    • /
    • 2008
  • Current methodologies used for the inference of thin film stresses through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. These methodologies have recently been extended to non-uniform stress and curvature states for the thin film subject to non-uniform, isotropic misfit strains. In this paper we study the same thin film/substrate system but subject to non-uniform, anisotropic misfit strains. The film stresses and system curvatures are both obtained in terms of the non-uniform, anisotropic misfit strains. For arbitrarily non-uniform, anisotropic misfit strains, it is shown that a direct relation between film stresses and system curvatures cannot be established. However, such a relation exists for uniform or linear anisotropic misfit strains, or for the average film stresses and average system curvatures when the anisotropic misfit strains are arbitrarily non-uniform.

Investigation of the effects of connectors to enhance bond strength of externally bonded steel plates and CFRP laminates with concrete

  • Jabbar, Ali Sami Abdul;Alam, Md Ashraful;Mustapha, Kamal Nasharuddin
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1275-1303
    • /
    • 2016
  • Steel plates and carbon-fiber-reinforced polymer (CFRP) laminates or plates bonded to concrete substrates have been widely used for concrete strengthening. However, this technique cause plate debonding, which makes the strengthening system inefficient. The main objective of this study is to enhance the bond strength of externally bonded steel plates and CFRP laminates to the concrete surface by proposing new embedded adhesive and steel connectors. The effects of these new embedded connectors were investigated through the tests on 36 prism specimens. Parameters such as interfacial shear stress, fracture energy and the maximum strains in plates were also determined in this study and compared with the maximum value of debonding stresses using a relevant failure criterion by means of pullout test. The study indicates that the interfacial bond strength between the externally bonded plates and concrete can be increased remarkably by using these connectors. The investigation verifies that steel connectors increase the shear bond strength by 48% compared to 38% for the adhesive connectors. Thus, steel connectors are more effective than adhesive connectors in increasing shear bond strength. Results also show that the use of double connectors significantly increases interfacial shear stress and decrease debonding failure. Finally, a new proposed formula is modified to predict the maximum bond strength of steel plates and CFRP laminates adhesively glued to concrete in the presence of the embedded connectors.

Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;She, Jun-Kuan;Zhang, Dan
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.297-311
    • /
    • 2016
  • Based on the distributed fiber optic sensing (DFOS) technique, plastic optical fibers (POFs) are attractive candidates to measure deformations of geotechnical structures because they can withstand large strains before rupture. Understanding the mechanical interaction between an embedded POF and the surrounding soil or rock is a necessary step towards establishing an effective POF-based sensing system for geotechnical monitoring. This paper describes a first attempt to evaluate the feasibility of POF-based soil deformation monitoring considering the POF-soil interfacial properties. A series of pullout tests were performed under various confining pressures (CPs) on a jacketed polymethyl methacrylate (PMMA) POF embedded in soil specimens. The test results were interpreted using a fiber-soil interaction model, and were compared with previous test data of silica optical fibers (SOFs). The results showed that the range of CP in this study did not induce plastic deformation of the POF; therefore, the POF-soil and the SOF-soil interfaces had similar behavior. CP was found to play an important role in controlling the fiber-soil interfacial bond and the fiber measurement range. Moreover, an expression was formulated to determine whether a POF would undergo plastic deformation when measuring soil deformation. The plasticity of POF may influence the reliability of measurements, especially for monitored geo-structures whose deformation would alternately increase and decrease. Taken together, these results indicate that in terms of the interfacial parameters studied here the POF is feasible for monitoring soil deformation as long as the plastic deformation issue is carefully addressed.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Bond between FRP formworks and concrete-effect of surface treatments and adhesives

  • Goyal, Reema;Mukherjee, Abhijit;Goyal, Shweta
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.671-692
    • /
    • 2016
  • FRP stay-in-place (SIP) formworks are designed as a support for casting concrete and as a tension reinforcement when concrete is cured. Bond development between SIP formwork and concrete is critical for FRP tension element to be effective. This paper reports the bond strength between FRP formwork and concrete for different interfacial treatments. A novel experimental setup is prepared for observing the bond behaviour. Three different adhesives with varying workability have been investigated. Along with the load-deformation characteristics, bond slip and strains in the formwork have been measured. A finite element numerical simulation was conducted for the experiments to understand the underlying mechanism. The results show that the adhesive bonding has the best bond strength.

Atomic layer chemical vapor deposition of Zr $O_2$-based dielectric films: Nanostructure and nanochemistry

  • Dey, S.K.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.2-65
    • /
    • 2003
  • A 4 nm layer of ZrOx (targeted x-2) was deposited on an interfacial layer(IL) of native oxide (SiO, t∼1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 30$0^{\circ}C$. Some as-deposited layers were subjected to a post-deposition, rapid thermal annealing at $700^{\circ}C$ for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous $ZrO_2$-rich Zr silicate containing about 15% by volume of embedded $ZrO_2$ nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-$ZrO_2$(t-$ZrO_2$) and monoclinic-$ZrO_2$(m-$ZrO_2$) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper Si $o_2$-rich Zr silicate and the lower $SiO_{x}$. The latter was sub-toichiometric and the average oxidation state increased from Si0.86$^{+}$ in $SiO_{0.43}$ (as-deposited) to Si1.32$^{+}$ in $SiO_{0.66}$ (annealed). This high oxygen deficiency in $SiO_{x}$ indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor(MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of $ZrO_2$ and $SiO_2$, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multi-layer nanostructure and nanochemistry that evolves.ves.ves.

  • PDF