• Title/Summary/Keyword: Interfacial Shear Strength

Search Result 260, Processing Time 0.021 seconds

A Study on the Eutectic Pb/Sn Solder Filip Chip Bump and Its Under Bump metallurgy(UBM)

  • Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1998
  • In the flip chip interconnection on organic substrates using eutectic Pb/Sn solder bumps highly reliable Under Bump Metallurgy (UBM) is required to maintain adhesion and solder wettability. Various UBM systems such as 1$\mu$m Al/0.2$\mu$m Pd/1$\mu$m Cu, laid under eutectic Pb/Sn solder were investigated with regard to their interfacial reactions and adhesion proper-ties. The effects of numbers of solder reflow and aging time on the growth of intermetallic compounds (IMCs) and on the solder ball shear strength were investigated. Good ball shear strength was obtained with 1$\mu$m Al/0.2$\mu$m Ti/5$\mu$m Cu and 1$\mu$m Al/0.2$\mu$m ni/1$\mu$m Cu even after 4 solder reflows or 7 day aging at 15$0^{\circ}C$. In contrast 1$\mu$m Al/0.2$\mu$m Ti/1$\mu$m Cu and 1$\mu$mAl/0.2$\mu$m Pd/1$\mu$m 쳐 show poor ball shear strength. The decrease of the shear strength was mainly due to the direct contact between solder and nonwettable metal such as Ti and Al resulting in a delamination. In this case thin 1$\mu$m Cu and 0.2$\mu$m Pd diffusion barrier layer were completely consumed by Cu-Sn and pd-Sn reaction.

Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

  • Hao-Jie Zhang;Xue-qin Tian;Xiao-Yu Ding;Hui-Yun Zheng;Lai-Ma Luo;Yu-Cheng Wu;Jian-Hua Yao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2367-2374
    • /
    • 2024
  • In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 ㎛. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites (탄소섬유/폴리아마이드 6,6 복합재료의 기계적 물성 향상)

  • Song, Seung A;On, Seung Yoon;Park, Go Eun;Kim, Seong Su
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.365-370
    • /
    • 2017
  • Mechanical properties of carbon fiber reinforced thermoplastic composites (CFRTPs) are affected by various factors. One of the them are poor compatibility of the epoxy sizing layer on the carbon fiber surface with thermoplastic matrix, which causes the inferior interfacial strength between fibers and matrix. In addition, the high molten-viscosity of thermoplastics attributes to the poor impregnation state. Consequently, many voids in the composite materials were generated, which leads to poor mechanical properties of the thermoplastic composites. In this study, the epoxy sizing on the carbon fiber surface was removed and the polyamide 6,6 solution was coated on the de-sized carbon fiber surface to improve the impregnation state and mechanical properties. Interlaminar shear strength (ILSS) of CFRPTs was estimated by implementing short beam shear tests. In addition, flexural strength was measured and the impregnation state of the composites was evaluated by calculating void content.

Nondestructive Microfailure and Interfacial Evaluation of Plasma-Treated PBO and Kevlar Fibers/Epoxy Composites using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 플라즈마 처리된 PBO와 Kevlar 섬유강화 Epoxy 복합재료의 비파괴적 파단특성 및 계면물성 평가)

  • 박종만;김대식;김성룡
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.74-79
    • /
    • 2003
  • Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole(PBO. Zylon) and poly(p-phenylene terephthalamide)(PPTA, Kevlar) fibers/ epoxy composites were investigated using micromechanical technique and nondestructive acoustic emission(AE). Interfacial shear strength(IFSS) and work of adhesion, Wa of PBO or Kevlar fibers/epoxy composites increased by oxygen-plasma treatment. Plasma-treated Kevlar fiber shooed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum value. Microfibril fracture pattern of plasma-treated Kevlar fiber appeared obviously. Based on the propagation of microfibril failure toward core region. the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly. The results oi nondestructive AE were consistent well with microfailure modes by optical observation in microdroplet and two-fiber composites tests.

Interfacial Evaluation of Single Ramie and Kenaf Fibers/Epoxy Composites Using Micromechanical Technique (Micromechanical 시험법을 이용한 Kenaf 및 Ramie 섬유 강화 에폭시 복합재료의 계면물성 평가)

  • Park, Joung-Man;Tran, Quang Son;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.6 no.2
    • /
    • pp.13-20
    • /
    • 2005
  • Interfacial shear strength (IFSS) of environmentally friendly natural fiber reinforced polymer composites plays a very important role in controlling the overall mechanical performance. The IFSS of various Ramie and Kenaf fibers/epoxy composites was evaluated using the combination of micromechanical test and nondestructive acoustic emission (AE) to find out optimal conditions for desirable final performance. Dynamic contact angle was measured for Ramie and Kenaf fibers and correlated the wettability properties with interfacial adhesion. Mechanical properties of Ramie and Kenaf fibers were investigated using single-fiber tensile test and analyzed statistically by both uni-and bimodal Weibull distributions. An influence of clamping effect on a real elongation for both Ramie and Kenaf fibers were evaluated as well. Two different microfailure modes, axial debonding and fibril fracture coming from fiber bundles and single fiber composites (SFC) were observed under tension and compression.

  • PDF

Interfacial Evaluation and Damage Sensing of Carbon Fiber/Epoxy-AT-PEI Composite using Electro-Micromechanical Techniques (Electro-micromechanical 시험법을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 손상 감지능 및 계면물성 평가)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.212-215
    • /
    • 2002
  • Interfacial evaluation and damage sensing of the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composites were performed using micromechanical test and electrical resistance measurement. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and thus their interfacial shear strength (IFSS) was improved due to the improved toughness. After curing process, the changes in electrical resistance (ΔR) with increasing AT-PEI contents increased gradually because of the changes in thermal expansion coefficient (TEC) and thermal shrinkage of matrix. Matrix fracture toughness was correlated to the IFSS, residual stress and electrical resistance. The results obtained from the electrical resistance measurement during curing process, reversible stress/strain, and durability test were consistent with modified matrix toughness properties.

  • PDF

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.

The Effect of Processing Variables on Self-Bonding Strength in Amorphous PEEK Films (비정질 PEEK 필름의 Self-Bonding강도에 미치는 제조공정변수의 영향)

  • Jo, Beom-Rae;Kardos, J.L.
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.191-196
    • /
    • 1995
  • Self-bonding strength developed at the interface of amorphous PEEK films is highly sensitive to the processing variables(time, temperature, and pressure) during the bonding process. In order to examine the effects of these processing variables, amorphous PEEK films were bonded at various bonding conditions and the resultant interfacial bond strengths were measured using a modified single lap-shear test. Experimental results showed that the developed self-bonding strength increases with increase in bonding temperature and is directly proportional to the bonding time raised to the 1/4 power. The applied pressure seems only to produce better wetting at the beginning stage of the bonding process. Conclusively, the self-bonding of amorphous PEEK films provides a great potential for developing excellent bond strength approaching the strength of the parent material without any adhesives in structural applications.

  • PDF

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.