• Title/Summary/Keyword: Interfacial Phenomena

Search Result 118, Processing Time 0.025 seconds

Solidification Phenomena of Al-4.5wt.% Cu Alloy under Moderate Pressures (고압하에서의 Al-4.5wt.%Cu합금의 응고현상)

  • Cho, In-Sung;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.156-163
    • /
    • 1995
  • Solidification of aluminum alloys under moderate pressures has been investigated. Interfacial heat transfer coefficient at the casting/mold interface varies with time after pouring the molten metal into the die cavity, and therefore plays an important role in determining solidification sequence. The heat transfer coefficients were evaluated by using an inverse problem method, based on the measured temperature distribution. The calculated heat transfer coefficients were used for solidification simulation in the squeeze casting process. The effects of applied pressure and positions of insulation in the mold have also been investigated on solidification microstructures and on the formation of macrosegregation of Al-4.5wt.%Cu alloys.

  • PDF

Preliminary Study for the Development of Optimum Fuel Contact Conductance Model (최적 핵연료 접촉 열전도도 모델 개발을 위한 예비 연구)

  • Yang, Yong-Sik;Shin, Chang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2488-2493
    • /
    • 2007
  • A gap conductance is very important factor which can affect nuclear fuel temperature. Especially, in case of an annular fuel, a gap conductance effect can lead an unexpected heat split phenomena which is caused by a large difference of an inner and outer gap conductance. The gap conductance mechanism is very complicated behavior due to the its strong dependency on microscopic factors such as a contact surface roughness, local contact pressure and local temperature. In this paper, for the decision of test temperature and pressure range, a procedure and calculation results of in-reactor fuel temperature and pressure analysis are summarized which can be applied to test equipment design and determination of test matrix. Based upon analysis results, it is concluded that the minimum and maximum test temperature are $300^{\circ}C$ and $530^{\circ}C$ respectively, and the maximum pellet/cladding interfacial contact pressure should be observed up to 45MPa.

  • PDF

One-Dimensional Heterostructures Based Nanodevices

  • Myung, Nosang V.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.3.1-3.1
    • /
    • 2009
  • Nanotechnology has beenrapidly evolved from passive nanostructures where nanostructures with steadystructures and functions often used as parts of a product to activenanostructures which change their properties during use. Startingaround 2010, it is anticipated that researchers will cultivate expertise withsystems of nanostructures, directing large numbers of intricate components tospecified needs. One dimensional (1-D) nanostructures suchas nanowires and nanotubes are extremely attractive building blocks for nextgeneration devices because of their high surface to volume ratio and uniquesize dependent properties. In addition, their extremely high aspectratio offers researchers the potentials to build axial or radialheterostructures to integrate multiple functionality from intrinsic propertiesof the material or through interfacial phenomena. Spatialmanipulation and the ability to assemble and position nanostuructures in acontrolled matter so they are registered to define spaces is also a criticalstep toward scalable integration in high density nanodevices. In thispresentation, a generalized template directed electrodeposition with ancillaryassembly, contact will be presented to synthesize axial and radialheterostructures in cost-effective matter and these individual nanostructureswill be applied to spintronics, gas and biological sensors and thermoelectrics.

  • PDF

finite Element Modeling of a Hemispherical Asperity Adhesively Contacting the Plane Surface of Semi-Infinite Rigid Body (강체평면에 흉착접촉하는 반구헝돌기의 유한요소모델링)

  • Cho, Sung-San;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2436-2441
    • /
    • 2002
  • Finite element technique considering adhesive forces is proposed and applied to analyze the behavior of elastic hemispherical asperity adhesively contacting the plane surface of semi -infinite rigid body. It is demonstrated that the finite element model simulates interfacial phenomena such as jump -to-contact and adhesion hysteresis that cannot be simulated with the currently available adhesive contact continuum models. This simulation aiso provides valuable information on contact pressure, contact region and stress distributions. This technique is anticipated to be utilized in designing a low-adhesion surface profile for MEMS/NEMS applications since various contact geometries can be analyzed with this technique.

Microstructural Characteristics of Al2O3/Cu Nanocomposites Depending on Fabrication Process (Al2O3/Cu 나노복합체 제조공정에 따른 미세조직 특성)

  • Kang, Kae-Myung;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.59-63
    • /
    • 2003
  • The microstructural characteristics of $Al_2$$O_3$/Cu composites hot-pressed at different temperatures for atmosphere switching from $H_2$to Ar have been studied. When the composite atmosphere was switched at $1000^{\circ}C$ it led to more homogeneous microstructure than when the atmosphere was switched at $1450^{\circ}C$. The strong sensitivity of Cu to atmosphere, especially the oxygen content in the atmosphere, was found to be responsible for the observed change, based upon the interfacial phenomena related to the formation of $CuAlO_2$. The practical implication of these results is that an optimum processing condition for the design of homogeneous microstructure and stable properties can be established.

Core-Shell Polymerization with Hydrophilic Polymer Cores

  • Park, Jong-Myung
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.51-65
    • /
    • 2001
  • Two-stage emulsion polymerizations of hydrophobic monomers on hydrophilic seed polymer particles were carried out to make core-shell composite particles. It was found that the loci of polymerization in the second stage were the surface layer of the hydrophilic seed latex particles, and that it has resulted in the formation of either eccentric core-shell particles with the core exposed to the aqueous phase or aggregated nonspherical composite particles with the shell attached on the seed surface as many small separated particles. The driving force of these phenomena is related to the gain in free energy of the system in going from the hydrophobic polymer-water interface to hydrophilic polymer-water interface. Thermodynamic analysis of the present polymerization system, which was based on spreading coefficients, supported the likely occurrence of such nonspherical particles due to the combined effects of interfacial free energies and phase separation between the two polymer phases. A hypothetical pathway was proposed to prepare hydrophilic core-hydrophobic shell composite latex particles, which is based on the concept of opposing driving and resistance forces for the phase migration. It was found that the viscosity of the monomer-swollen polymer phase played important role in the formation of particle morphology.

  • PDF

Dynamics of Electrowetting of a Liquid-Liquid Interface in a Cylindrical Tube (원형관내의 액체-액체 계면에 대한 전기습윤 현상의 동적 거동)

  • Kang, Kwan-Hyoung;Chung, Won-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.557-560
    • /
    • 2006
  • The contact angle of a meniscus and a droplet can be controlled by using electrowetting phenomena. We investigated the dynamic aspect of electrowetting for an oil-electrolyte interface formed inside a closed glass tube. A step input voltage is applied and the subsequent motion of the interface is recorded by a high-speed camera. A kind of capillary instability is observed near the three-phase contact line, which could degrade the reliability of device utilizing electrowetting such as electrowetting liquid lens. The dynamics of interface motion for different input voltages and the fluid viscosities are analyzed and discussed based on the experimental results.

  • PDF

The rheology of two-dimensional systems

  • Fuller, G.;Yim, K.S.;Brooks, C.;Olson, D.;Frank, C.
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.321-328
    • /
    • 1999
  • This paper discusses the rheology of complex interfaces comprised of amphiphilic materials that are susceptible to flow-induced orientation and deformation. The consequence of the coupling of the film micro-structure to flow leads to nonlinear rheology and surface fluid dynamics. Experimental methods designed to determine the mechanical rheological material functions of fluid-fluid interfaces as well as local, molecular and morphological responses are presented. These include a newly developed interfacial stress rheometer, flow ultraviolet dichroism, and Brewster-angle microscopy. These techniques are applied to a number of complex interfaces ranging from low molecular weight amphiphiles to polymer monolayers. Nonlinear flow phenomena ranging from two-dimensional nematic responses to highly elastic surface flows that manifest surface normal stress differences and elongational viscosities are described.

  • PDF

Numerical Study of Droplet Impact on Solid Surfaces Using a Coupled Level Set and Volume-of-Fluid Method (CLSVOF 방법을 이용한 액적-벽면 충돌에 관한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.744-752
    • /
    • 2003
  • A level set method is combined with the volume-of-fluid method so that the coupled method can not only calculate an interfacial curvature accurately but also can achieve mass conservation well. The coupled level set and volume-of-fluid(CLSVOF) method is efficiently implemented by employing an interface reconstruction algorithm which is based on the explicit relationship between the interface configuration and the fluid volume function. The CLSVOF method is applied for numerical simulation of droplet impact on solid surfaces with variable contact angles. The numerical results are found to preserve mass conservation and to be in good agreement with the data reported in the literature. Also, the present method proved to be applicable to the complex phenomena such as breakup and rebound of a droplet.

Spreading Kinetics of Poly(diisobutylene maleic acid) at the Air-water Interface

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.661-668
    • /
    • 2015
  • The surface rheological properties of polymer monolayer show complicated non-linear viscoelastic flow phenomena when they are subjected to spreading flow. These spreading flow properties are controlled by the characteristics of flow units. The kinetics of the formation of an interfacial film obtained after spreading poly(diisobutylene maleic acid) at air-water interface were studied by measuring of the surface pressure with time. The experimental data were analyzed theoretically according to a nonlinear surface viscoelastic model. The values of dynamic modulus, static modulus, surface viscosities and rheological parameters in various area/ monomer were obtained by appling experimental data to the equation of nonlinear surface viscoelastic model.