• 제목/요약/키워드: Interfacial Energy

검색결과 628건 처리시간 0.032초

건설 현장 내 비점오염원 처리 특성 평가 (Characteristics of Stormwater Treatment in Construction Site)

  • 최영화;김창용;김효상;오지현;정설화
    • 한국지반환경공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.69-75
    • /
    • 2010
  • 강우 시, 건설 현장 내에서 발생하는 비점오염원의 경우 타 오염 물질 대비 부유 물질 부하량이 매우 높게 나타나며 강우 강도에 대한 민감도가 공사 초반의 경우 매우 높게 나타난다. 이러한 비점오염원을 저감할 수 있는 시설로 가설형 비점오염원 처리 시설과 여과형 처리 시설이 있다. 가설형 시설의 경우 전반적으로 비점오염원에 대한 저감 효율이 제한적이며, 여과형 처리 시설의 경우 동력의 소모가 높고, 공간적 효율성이 다소 떨어진다는 단점이 있다. 따라서, 본 연구에서는 기존의 비점오염원 처리 시설의 단점을 해소하고 보다 높은 비점오염원 처리 효율을 확보하기 위해 조립식 응집 침전 시스템을 개발하여 현장에 적용하여 비점오염원 처리 특성을 평가하고자 하였다. 조립식 응집 침전 시스템의 경우 가설 형식이나 여과형 처리 시설 대비 매우 높은 처리 효율을 나타내며, 공간적 효율성이 매우 높은 것으로 나타나 비점오염원 발생 인근 지역의 수계 오염 방지 및 민원 발생 방지 효과가 있을 것으로 기대할 수 있었다. 이러한 조립식 응집 침전 시설의 현장 적용 시, 최적의 비점오염원 저감 효과를 확보하기 위해서는 발생 비점오염원의 농도에 따라 적정 응집제 주입량 산정 및 슬러지 순환 시설의 적용 및 지속적인 유지 관리를 통한 침전 슬러지의 계면 높이 조절이 반드시 필요하다.

공유 유기 골격체 기반 복합 분리막 : 고찰 (Covalent Organic Framework Based Composite Separation Membrane: A Review)

  • 심정환;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제33권4호
    • /
    • pp.149-157
    • /
    • 2023
  • 공유 유기 프레임워크(COF)는 분자 분리, 염료 분리, 가스 분리, 여과 및 담수화를 포함한 다양한 응용 분야에서 가능성을 보여주었습니다. COF를 막에 통합하면 투과성, 선택성 및 안정성이 향상되어 분리 공정이 향상됩니다. 단일 벽 탄소 나노튜브(SWCNT)와 COF를 결합하면 염료 분리에 이상적인 높은 투과성과 안정성을 가진 나노 복합막을 생성합니다. COF를 폴리아미드(PA) 막에 통합하면 합성 계면 전략을 통해 투과성과 선택성이 향상됩니다. 혼합 매트릭스 막(MMM)의 3차원 COF 필러는 CO2/CH4 분리를 향상시켜 바이오가스 업그레이드에 적합합니다. COF와 금속 유기 프레임워크(MOF) 막을 결합한 모든 나노 다공성 복합재(ANC) 막은 투과성-선택성 트레이드오프를 극복하여 가스 투과성을 크게 향상시킵니다. 가상 COF (hypoCOF)를 사용한 계산 시뮬레이션은 CO2 분리 및 H2 정제와 관련하여 우수한 CO2 선택성과 작업 능력을 입증합니다. 박막 복합재(TFC) 및 폴리술폰아미드(PSA) 막에 통합된 COF는 유기 오염물, 염 오염물 및 중금속 이온에 대한 거부 성능을 향상시켜 분리 능력을 향상시킵니다. TpPa-SO3H/PAN 공유 유기 프레임워크 막(COFM)은 대전된 그룹을 활용하여 정전기적 반발을 통해 효율적인 담수화를 가능하게 함으로써 기존의 폴리아미드 막에 비해 우수한 담수화 성능을 보여 이온 및 분자 분리의 잠재력을 제시했습니다. 이러한 연구 결과는 투과성, 선택성 및 안정성을 향상시켜 향상된 분리 공정을 위한 막 기술에서 COF의 잠재력을 강조합니다. 이 검토에서는 분리 공정에 적용된 COF에 대해 논의합니다.

고분자 변형으로 가능해진 MOF의 원위치 형성을 이용한 혼합기질 기체분리막의 대면적화 가능한 제막 (Scalable Fabrications of Mixed-Matrix Membranes via Polymer Modification-Enabled In Situ Metal-Organic Framework Formation for Gas Separation: A Review)

  • 박성환;이영세
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.213-220
    • /
    • 2023
  • 혼합기질막(mixed-matrix membrane, MMM)은 고성능 충전제가 고분자 기질에 분산된 구조로, 지난 30년간 이를 이용한 기체분리 연구가 집중적으로 수행되었다. 일반적으로 MMM은 고분자 막보다 우수한 기체 분리 성능을 가지고 있으며, 다결정 막에 비해 좋은 확장성을 보인다. 그러나 이러한 잠재성에도 불구하고, MMM의 상용화는 여러 가지 어려운 문제들로 인해 지연되고 있다. MMM의 주요 문제 중 하나는 충전제와 고분자 사이의 부적절한 계면 상호작용으로 결함(즉, 개면 공극 등)이 형성될 수 있다는 것이다. 따라서 많은 MMM 연구에서 이러한 계면의 문제를 해결하기 위한 전략이 제시되었다. 하지만 계면상의 상호작용으로 MMM이 가진 문제점들을 해결하려는 과학적 접근에 비해 손쉽고 효과적으로 대면적의 MMM을 제조하기 위한 공학적 접근은 상대적으로 간과되어 왔다. 본 총설에서는 MMM의 대면적화를 위한 공학적인 접근 중 하나인 고분자 변형을 통해 가능해진 금속-유기 골격체(metal-organic framework, MOF)의 원위치 형성을 이용한 MMM 제막 방법을 소개하고자 한다. 이 새로운 제막법은 현재 MMM이 직면하고 있는 문제들을 공학적인 접근으로 효과적으로 해결하여 MMM의 상용화를 촉진시킬 수 있다.

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.

PCM 기술의 콘크리트 적용 II : 계면중합법에 의한 1-도데카놀 마이크로 캡슐에 있어서 계면활성제로 사용된 SSMA의 표면활성도가 마이크로 캡슐의 특성에 미치는 영향 (Application of PCM Technology to Concrete II : Effects of SSMA(Sulfonated Styrene-Maleic Anhydride) on the Properties of the 1-Dodecanol Micro-Capsule)

  • 신세순;정재윤;임명관;최동욱;김영호
    • 한국건설순환자원학회논문집
    • /
    • 제1권1호
    • /
    • pp.17-25
    • /
    • 2013
  • 축열재 이용 기술은 실내 냉난방을 위하여 사용된 에너지를 장시간 일정온도로 유지할 수 있도록 하여 에너지 사용 효율을 높이는 장점이 있다. 이 중 상변화 물질을 이용한 잠열 축열재는 물질의 잠열성질을 이용하는 것으로서 심물질로서 일정온도에서 녹는점을 갖는 물질을 캡슐화 하여 이를 건축자재에 적용하여 실내 및 외기의 온도에 따라서 심물질이 녹거나 어는 과정에서 축열과 방열로 인한 에너지 절감 및 차단 효과를 갖는다. 상변화 물질을 이용해 축열재를 만드는 방법은 마이크로 캡슐화의 방법이 있다. 이 방법은 크게 분류하면 화학적 방법, 물리 화학적 방법 및 물리적 기계적 방법의 3가지로 나눌 수 있다. 물리 화학적 방법으로 습식공정에 의한 마이크로 캡슐화 공정을 이용했으며 이 공정은 심물질을 용매에서 에멀젼화한 다음 고분자모노머를 심물질인 에멀젼의 벽면에 코팅하여 경화 시키는 공정이다. 이 경우에 심물질의 에멀젼이나 벽재 모노머의 코팅 성능을 좋게 하기 위하여 계면활성제가 사용된다. 또한 계면활성제의 특성에 따라서 마이크로 캡슐화의 성능이 좌우되고 특히 벽재물질의 코팅 두께 및 코팅의 균일성에 크게 좌우된다. 본 연구에서는 상변화를 이용한 축열재로서 심물질인 1-도데카놀을 멜라민수지로 계면중합법에 의하여 마이크로 캡슐화 하는데 있어서 계면활성제인 SSMA(sulfonated styrene-maleic anhydride)의 화학적 특성에 따른 마이크로 캡슐의 성능과 이에 따른 축열 성능을 비교하였다.

반응성 화학기상증착법에 의해 다결정실리콘 위에 직접성장된 $CoSi_2$ 층의 열적안정성의 개선 (Improvement of Thermal Stability of In-situ Grown CoSi$_2$ Layer on Poly-Si Using Reactive Chemical Vapor Deposition)

  • 이희승;이화성;안병태
    • 한국재료학회지
    • /
    • 제11권8호
    • /
    • pp.641-646
    • /
    • 2001
  • $650^{\circ}C$에서 Co(η$^{5}$ $V_{5}$ $H_{5}$ ) (CO)$_2$의 반웅성.화학기상증착법에 의해 도핑되지 않은 다결정실리콘 위에 $CoSi_2$충이 직접 (in-situ) 성장되었고 이 $CoSi_2$층들의 열적안정성을 $800~1000^{\circ}C$의 온도구간에서 조사하였다. 직접 성장 방법에 의해 성장된 $CoSi_2$충은 표면에 평행한 (111) 면의 면적이 큰 결정립들을 가지는 반면에, $CoSi_2$가 먼저 형성되고 $CoSi_2$로 상변태되는 기존의 두단계 성장 방법에 의해 성장된 CoSi$_2$충은 표면에 평행한 (111) 면을 가지는 결정립들이 거의 없었다. 직접 성장 방법에 의해 성장된 $CoSi_2$층의 열적 안정성은 기존의 두 단계 성장 방법에 의해 성장된 $CoSi_2$층의 열적안정성보다 개선되어 열화 온도가 $100^{\circ}C$정도 더 높았다. 큰 결정립의 다결정실리론 기판 위에서 직접 성장된 $CoSi_2$충은 $950^{\circ}C$에서 열처리한 후에도 안정했다. 직접 성장에 의한 열적 안정성의 개선 효과는 다결정실리콘 기판의 결정립의 크기가 작을 때 두드러졌다. 직접 성장된 $CoSi_2$층의 열적 안정성 개선의 주된 원인은 다결정실리콘의 각 결정립들 위에 유사에피 성장을 하면서 자라난 $CoSi_2$ 결정립들이 균일한 $CoSi_2$층을 형성하여 이것이 계의 계면에너지를 낮추기 때문이라고 사료된다.

  • PDF

Al-1% Si층과 Ti-silicide층의 반응에 관한 연구 (A Study on the Reaction of Al-1% Si with Ti-silicide)

  • 황유상;백수현;송영식;조현춘;최진석;정재경;김영남;심태언;이종길;이상인
    • 한국재료학회지
    • /
    • 제2권6호
    • /
    • pp.408-416
    • /
    • 1992
  • Single-Si 기판과 poly-Si 기판에 각각 Ti을 sputter한 후 RTA 처리하여 안정한 TiS$i_2$를 형성하였다. 그 위에 Si이 1% 첨가된 Al-1% Si을 600nm sputter한 후 후속 열처리로서 400-60$0^{\circ}C$ 에서 30분간 $N_2$분위기로 furnace어닐링을 실시하였다. 이렇게 준비된 각 시편에 대하여 면저항 측정, Auger분석, SEM 사진으로 Al-1% Si/TiS$i_2$이중층 구조에서 Ti-silicide의 열적 안정성을 살펴 보았고, EDS 분석과 X-ray 회절 peak 분석을 통하여 Al-1% Si 층과 TiS$i_2$층의 반응으로 생긴 석출물의 성분과 상을 조사하였다. 이로 부터 다음과 같은 결과를 얻었다 Single-Si 기관에서 형성한 TiS$i_2$층은 Al-1% Si 층과 55$0^{\circ}C$에서 완전히 반응하여 석출물을 형성하였고, poly-Si 기판에서 형성한 TiS$i_2$층은 Al-1% Si 층과 50$0^{\circ}C$에서 완전히 반응하여 석출물을 형성하였는데 전반적으로 기판이 poly-Si인 경우가 반응이 더 잘 일어났고, 석출물의 크기도 비교적 컸다. 이는 poly-Si에 존재하는 grain boundary로 인해 poly-Si에서 형성된 Ti-silicide 층이single-Si 기관에서 형성된 Ti-silicide 층보다 불안정하기 때문으로 생각된다. EDS 분석에 의하여 석출물은 Ti, Al, 그리고 Si로 이루어진 3상 화합물이라고 추정되었고, X-ray회절 분석에 의해 석출물은 Ti, Al, 그리고 Si간의 3상 화합물인 T$i_7$A$l_5$S$i_12$로 확인되었다.

  • PDF

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF