• Title/Summary/Keyword: Interface zone

Search Result 397, Processing Time 0.029 seconds

Extensometers results correction in concrete dams: A case study in RCC Zhaveh Dam

  • Ziaei, Ahad;Ahangari, Kaveh;Moarefvand, Parviz;Mirzabozorg, Hasan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.17-31
    • /
    • 2017
  • Since extensometers are used to determine the absolute deformation of foundation and abutments and all results are obtained in reference to the base rod, the accuracy of these results has been constantly a subject of debate. In this regard, locating and installing extensometers outside the range of effect zone is also another challenge. The main purpose of this paper is to investigate and modify extensometers results based on the mentioned issues. For this aim, the concrete RCC Zhaveh dam in Iran was selected as the case study. To study the results of extensometers installed in this dam, first, the 3DEC_DP 5.00 software was applied for numerical modeling. Parameters such as discontinuities, dead load and piezometric pressure in the interface of concrete and rock were considered. Next, using the results obtained from 6 extensometers in foundation and abutments and 4 clinometers in dam body, the numerical model was calibrated through back analysis method. The results indicate that the base rod is moved and is not recommended being used as the base point. In other words, because installation of base anchor outside the range of effect zone is not possible due to the operational and economic considerations, the obtained results are not accurate enough. The results indicate a considerable 2-3 mm displacement of the base rod (location of the base anchor) in reference to the real zero point location, which must be added to the base rod results.

Effect of Interfacial Reaction Layer on the Electrochemical Performance of LSGM-Based SOFCs (LSGM계 고체산화물 연료전지의 전기화학적 성능에 미치는 계면반응층의 영향)

  • Kim, Kwang-Nyeon;Moon, Jooho;Kim, Hyoungchul;Son, Ji-Won;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.665-671
    • /
    • 2005
  • LSGM is known to show very serious interfacial reaction with other unit cell components, such as electrode, electrode functional or buffering layers. Especially, the formation of very resistive LaSr$Ga_{3}$$O_{7}$ phase at the interface of an anode and an electrolyte is the most problematic one in LSGM-based SOFCs. In this study, we investigated the interfacial reactions in LSGM-based SOFCs under different unit cell configurations. According to the microstructural analysis on the interfacial layer between an electrolyte and its neighboring component, serious interfacial reaction zone was observed. From the electrical and electrochemical characterization of the cell, we found such an interfacial reaction zone not only increased the internal ohmic resistance but also decreased the OCV(Open Cell Voltage) of the unit cell, and thus consequently deteriorated the unit cell performance.

The Effect of Fiber Stacking Angle on the Relationship Between Fatigue Crack and Delamination Behavior in a Hybrid Composite Materials (하이브리드 복합재료의 섬유배향각이 피로균열 및 층간분리 거동의 관계에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • The hybrid composite material (Al/GFRP laminates) are applied to the fuselage and wing in a aircraft. Therefore, Al/GFRP laminates suffer from the cyclic bending moments. This study was to evaluate the effect of fiber stacking angle on the fatigue crack propagation and delamination behavior using the relationship between crack growth rate (da/dN) and stress intensity factor range (ΔK) in Al/GFRP laminates under cyclic bending moment. The variable delamination growth behavior in case of three different type of fiber orientations, i.e., [Al/O$_2$/Al], [Al/+45$_2$/Al] and [Al/90$_2$/Al] at the interface of Al layer and glass fiber layer was measured by ultrasonic C-scan images. As results of this study, It represent that the delamination shape should turns out to have more effective characteristics on the fiber stacking angle. The extension of the delamination zone in case of [Al/+45$_2$/Al] and [Al/90$_2$/Al] were not formed along the fatigue crack profile. The shape of delamination zone depend on fiber stacking angle and the variable type with the delamination contour decreased non-linearly toward the crack tip at the Al layer.

Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete (유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석)

  • Baek, Jongeun;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Thixoforming Characteristics of Metal Matrix Composites (Phase identification of $SiC_p/AZ91HP$ Mg composite) (금속기 복합재료의 틱소포밍 특성 ($SiC_p/AZ91HP$ Mg 복합재료의 상분석을 중심으로))

  • Lee, Jung-Il;Kim, Young-Jig
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.281-289
    • /
    • 1999
  • The stirred and thixoformed $SiC_p/AZ91HP$ Mg composites are studied on the basis of microstructural analysis using transmission electron microscopy (TEM). The products of interfacial reaction are identified as $Mg_2Si$, MgO and $Mg_{17}Al_{12}$ phases and the crystallized phases are found to be orthorhmbic $Al_6Mn$ and decagonal T phases. It is shown that $Mg_2Si$ and $Mg_{17}Al_{12}$ phases are found at the surface of $SiC_p$ and $Al_6Mn$ is found near interface and crystallized on the matrix. Phase identification is carried out by crystallographic work based on primitive cell volume, zero order Laue zone (ZOLZ) patterns and single convergent beam electron diffraction (CBED) patterns containing higher order Laue zone ring from a nanosized region.

  • PDF

A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure (기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성)

  • Park, Heung-Il;Kim, Chang-Up;Huh, Bo-Young;Lee, Sung-Youl;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

Recent Trends of Friction Stir Welding of Titanium (타이타늄 소재 마찰교반용접 기술 동향)

  • Chun, Chang-Keun;Kim, Sung-Wook;Kim, Heung-Joo;Chang, Woong-Seong;Noh, Joong-Suk
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.16-20
    • /
    • 2013
  • Titanium and its alloys have been widely using in the various field of industry application due to high corrosion resistant properties and mechanical properties. Titanium is highly reactive in the high temperature state and the formation of titanium oxide and porosities in the nuggets of fusion welding will results in the degradation of the mechanical properties. For this reason the studies of friction stir welding for titanium have been investigated recently. The FSW zones of titanium were classified by the weld nugget (WN), the linear transition boundary (TB) and the heat affected zone (HAZ). The WN along with titanium parent was characterized by the presence of twins and dislocations. The average grain size and hardness of WN has been changed according to heat input. The grain refinement resulted from the FSW increased the hardness in the stir zone. Sound dissimilar joints between SUS 304 and CP-Ti were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700-1100 rpm. Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding, hence the ultimate tensile shear strength of joint reached 100% of Al 1060. Mg alloy and Ti were successfully butt joined by inserting a probe into the Mg alloy plate with slightly offsetting. But Ti-Al intermetallic compound layers formed at the interface of these joints.

Virtual Navigation of Blood Vessels using 3D Curve-Skeletons (3차원 골격곡선을 이용한 가상혈관 탐색 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

Conduction Properties of NitAI Ohmic Contacts to AI-implanted p-type 4H-SiC (AI 이온 주입된 p-type 4H-SiC에 형성된 Ni/AI 오믹접촉의 전기 전도 특성)

  • Joo, Seong-Jae;Song, Jae-Yeol;Kang, In-Ho;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Lee, Yong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.717-723
    • /
    • 2009
  • Ni/Al ('/' denotes deposition sequence) contacts were deposited on Al-implanted 4H-SiC for ohmic contact formation, and the conduction properties were characterized and compared with those of Ni-only contacts. The thicknesses of the Ni and Al thin film were 30 nm and 300 nm, respectively, and the films were sequentially deposited bye-beam evaporation without vacuum breaking. Rapid thermal anneal (RTA) temperature was varied as follows : $840^{\circ}C$, $890^{\circ}C$, and $940^{\circ}C$. The specific contact resistivity of the Ni contact was about $^{\sim}2\;{\pm}\;10^{-2}\;{\Omega}{\cdot}cm^2$, However, with the addition of Al overlayer, the specific contact resistivity decreased to about $^{\sim}2\;{\pm}\;10^{-4}\;{\Omega}{\cdot}cm^2$, almost irrespective of RTA temperature. X-ray diffraction (XRD) analysis of the Ni contact confirmed the existence of various Ni silicide phases, while the results of Ni/Al contact samples revealed that Al-contaning phases such as $Al_3Ni$, $Al_3Ni_2$, $Al_4Ni_3$, and $Ab_{3.21}Si_{0.47}$ were additionally formed as well as the Ni silicide phases. Energy dispersive spectroscopy (EDS) spectrum showed interfacial reaction zone mainly consisting of Al and Si at the contact interface, and it was also shown that considerable amounts of Si and C have diffused toward the surface. This indicates that contact resistance lowering of the Ni/Al contacts is related with the formation of the formation of interfacial reaction zone containing Al and Si. From these results, possible mechanisms of contact resistance lowering by the addition of Al were discussed.