• Title/Summary/Keyword: Interface wave

Search Result 467, Processing Time 0.029 seconds

Study on the Bonding Process between Thin film and Piezoelectric Materials (박막과 압전 재료 결합에 관한 연구)

  • Chong, Woo-Suk;Kim, Gi-Beum;Hong, Chul-Un
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1014-1018
    • /
    • 2005
  • The purpose of this study is to obtain strong bond strength at the interface between piezoelectric substrates and semiconductor thin films to be applied for the manufacture of high-performance acoustic wave semiconductor coupled device. For this purpose, we have compared and examined the effects of different surface treatment methods on hydrophile properties at the surface of the piezoelectric substrates. Moreover, we have observed the effect of microwave and laser on the elimination of water molecules at the interface. As for the piezoelectric substrates, dry method for surface treatment was found to be superior in the control of hydrophilicity of the surface compared to wet method. On the other hand, both microwave and laser were found to be effective in the elimination of water molecules in the interface.

Computer simulation to determine system parameters of the square-wave adapted fast impedance analyzer for the electrode - electrolyte interface analysis (구형파를 이용한 전극계면 분석용 고속 임피던스 분석기의 설계변수 확정을 위한 컴퓨터 시뮬레이션)

  • Kim Gi-Ryon;Kim Gwang-Nyeon;Shim Yoon-Bo;Jeon Gye-Rok;Jung Dong-Keun
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.45-55
    • /
    • 2005
  • There are electric double layer capacitance, polarization resistance and solution resistance in the interface between electrode and solution. Electrode process could be evaluated by the electrical impedance analysis. The necessities of the electrochemical cell analysis with high speed impedance analyzer are followings: minimization of the effects of electric stimulation on electrochemical cell and the concentration of reactive materials, and optimization of impedance signal resolution. This paper represents the design criteria for the selection and stimulation to develop fast impedance analyzer prototype for a electrochemical cell. It was suggested that the design of 470k sample/s sampling rate, 13 bit ABC resolution, and 140ms recording time is required for high speed impedance analysis system in frequency range between dc and 10kHz.

  • PDF

A Framework for Processing Brain Waves Used in a Brain-computer Interface

  • Sung, Yun-Sick;Cho, Kyun-Geun;Um, Ky-Hyun
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.315-330
    • /
    • 2012
  • Recently, methodologies for developing brain-computer interface (BCI) games using the BCI have been actively researched. The existing general framework for processing brain waves does not provide the functions required to develop BCI games. Thus, developing BCI games is difficult and requires a large amount of time. Effective BCI game development requires a BCI game framework. Therefore the BCI game framework should provide the functions to generate discrete values, events, and converted waves considering the difference between the brain waves of users and the BCIs of those. In this paper, BCI game frameworks for processing brain waves for BCI games are proposed. A variety of processes for converting brain waves to apply the measured brain waves to the games are also proposed. In an experiment the frameworks proposed were applied to a BCI game for visual perception training. Furthermore, it was verified that the time required for BCI game development was reduced when the framework proposed in the experiment was applied.

Electronic Structure and Magnetism of CrP/SrBi Interface: A First Principles Study

  • Bialek, Beata;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.93-96
    • /
    • 2007
  • We investigated the electronic structure and magnetic properties of zinc-blende CrP/SrBi interface by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the half-metallicity is destroyed when the two half-metals are in contact. Magnetic moments of the atoms forming the supercell differ considerably from the respective values obtained for the bulk structures of the two materials. Cr atoms being and not being in contact with Bi atoms have magnetic moment 3.43 and $2.69{\mu}_B$, respectively. Bi atoms lose their majority electrons which results in their negative polarization. Alkaline Sr atoms are very weakly negatively polarized. The spin distribution within the supercell is such that well separated regions of positive and negative polarization are seen, especially around the layer of P atoms being in contact with the layer of Sr atoms.

Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

  • Koo, Bonguk;Yang, Jianming;Yeon, Seong Mo;Stern, Frederick
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.529-561
    • /
    • 2014
  • The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research.

A Study on Ultrasonic Wave Propagation Model in Multi-Layer Media (다중 접착계면의 초음파 전달 모델 연구)

  • Lim, Soo-Yong;Kim, Dong-Ryun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2012
  • This research simulates the ultrasonic wave propagation in multi-layered media using generalized formular of system response function. We made the artificial defect specimen of a rocket motor and compared with experimental wave forms. The simulation results are coincide with measured waves and we found that the pulse echo method is able to detect unbond defect at liner-propellant interface.

Recent Advances in Scanning Acoustic Microscopy for Adhesion Evaluation of Thin Films

  • Ju, Hyeong-Sick;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.534-549
    • /
    • 2009
  • As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.

A Study on Ultrasonic Wave Propagation Model in Multi-Layer Media (다중 접착계면의 초음파 전달 모델 연구)

  • Lim, Soo-Yong;Kim, Dong-Ryun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.912-918
    • /
    • 2011
  • This research simulates the ultrasonic wave propagation in multi-layered media using generalized formular of system response function. We made the artificial defect specimen of a rocket motor and compared with experimental wave forms. The simulation results are coinciede with mesuared waves and we found that the pulse echo method is able to detect disbond at liner-propellant interface.

  • PDF

Unstable Interface Phenomena in a Micro Channel

  • Inamuro T.;Kobayashi K.;Yamaoka Y.;Ogino F.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.118-120
    • /
    • 2003
  • The behavior of viscous fingerings caused by an external force is investigated by using a two­phase lattice Boltzmann method. The effects of the modified capillary number, the viscosity contrast, and the modified Darcy-Rayleigh number on the instability of interfaces are found. The calculated wave numbers are in good agreement with the theoretical ones in the range of wave numbers smaller than 10, but the calculated ones tend to become smaller than the theoretical ones in higher wave numbers.

  • PDF