• Title/Summary/Keyword: Interface structure

Search Result 2,431, Processing Time 0.034 seconds

CPLD Implementation of SEED Cryptographic Coprocessor (SEED 암호 보조 프로세서의 CPLD 구현)

  • Choi Byeong-Yoon;Kim Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.177-185
    • /
    • 2000
  • In this paper CPLD design of cryptographic coprocessor which implements SEED algorithm is described. To satisfy trade-off between area and speed, the coprocessor has structure in which 1 round operation is divided into three subrounds and then each subround is executed using one clock. To improve clock frequency, online precomputation scheme for round key is used. To apply the coprocessor to various applications, four operating modes such as ECB, CBC, CFB, and OFB are supported. The cryptographic coprocessor is designed using Altera EPF10K100GC503-3 CPLD device and its operation is verified by encryption or decryption of text files through ISA bus interface. It consists of about 29,300 gates and performance of CPLD chip is about 44 Mbps encryption or decryption rate under 18 Mhz clock frequency and ECB mode.

  • PDF

A Study on Design of Schema Integration based Biological Information Retrieval System (스키마 통합 기반 생명정보 검색시스템(BIRS) 설계에 관한 연구)

  • Han, Keon;Lee, Sang-Ho;Ahn, Bu-Young
    • Journal of Information Management
    • /
    • v.40 no.1
    • /
    • pp.217-234
    • /
    • 2009
  • In computer-based virtual lab, a bioscience researcher who wants to obtain bio information first uses a biodiversity-related database to retrieve information on species, ecology and distribution of an organism. The researcher also needs to access gene/protein databases such as GenBank or PDB to find information on the organism's genetic sequence and protein structure. Furthermore, the researcher should search for academic papers containing the information on the organism so that his research is based on comprehensive and accurate information. This series of activities often undermines research efficiency as it takes a lot of time and causes inconvenience on the part of researchers. To solve such inconvenience, we analyzed various methods for integrated search and chosen schema integration. In addition, we analyzed each databases and extracted metadata for designing schema integration. This paper introduces a biological information retrieval system(BIRS) using schema integration and it's interface that will increase research efficiency for bioscience.

Tree Component Model : Component Composition with Hybrid Message Passing (트리 컴포넌트 모델 : 하이브리드 메시지 전달을 사용한 컴포넌트 조합)

  • Huh, Je-Min;Kim, Ji-Hong
    • The KIPS Transactions:PartD
    • /
    • v.15D no.5
    • /
    • pp.659-668
    • /
    • 2008
  • Recently, the component model based on the Exogenous Connector has been proposed in which controls are separated from computation by managing the beginning and result of method calls in the connector. Although it could be loosely coupled between components, it has a problem that is a potential preponderance of element objects of the system by increasing the number of connectors and connection levels. In this paper we propose the Tree Component Model with the Hybrid Message Passing that combines direct and indirect message passing. In our model, components are wrapped by interfaces and controls are separated from computation by only using their interface references. There is a unique feature that the composition structure of components becomes the tree always. As a result of demonstration and comparison, it is found that the Tree Component Model is applicable practically and decreases objects to mediate message passing and build the system.

A Study on Radiological Image Retrieval System (방사선 의료영상 검색 시스템에 관한 연구)

  • Park, Byung-Rae;Shin, Yong-Won
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • The purpose of this study was to design and implement a useful annotation-based Radiological image retrieval system to accurately determine on education and image information for Radiological technologists. For better retrieval performance based on large image databases, we presented an indexing technique that integrated $B^+-tree$ proposed by Bayer for indexing simple attributes and inverted file structure for text medical keywords acquired from additional description information about Radiological images. In our results, we implemented proposed retrieval system with Delphi under Windows XP environment. End users, Radiological technologists, are able to store simple attributes information such as doctor name, operator name, body parts, disease and so on, additional text-based description information, and Radiological image itself as well as to retrieve wanted results by using simple attributes and text keywords from large image databases by graphic user interface. Consequently proposed system can be used for effective clinical decision on Radiological image, reduction of education time by organizing the knowledge, and well organized education in the clinical fields. In addition, It can be expected to develop as decision support system by constructing web-based integrated imaging system included general image and special contrast image for the future.

  • PDF

Analysis of Domestic and International Biomechanics Research Trends in Shoes: Focusing on Research Published in 2015-2019 (신발 분야 국내외 운동역학 연구동향 분석: 2015-2019년에 발간된 연구를 중심으로)

  • Back, Heeyoung;Yi, Kyungock;Lee, Jusung;Kim, Jieung;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.185-195
    • /
    • 2020
  • Objective: The purpose of this study was to identify recent domestic and international research trends regarding shoes carried out in biomechanics field and to suggest the direction of shoe research later. Method: To achieve this goal of research, the Web of Science, Scopus, PubMed, Korea Education and Research Information Service and Korean Citation Index were searched to identify trends in 64 domestic and international research. Also, classified into the interaction of the human body, usability evaluation of functional shoes, smart shoe development research, and suggested the following are the suggestions for future research directions. Conclusion: A study for the coordination of muscle activity, control of motion and prevention of injury should be sought by developing shoes of eco-friendly materials, and scientific evidence such as physical aspects, materials, floor shapes and friction should be supported. Second, a study on elite athletes in various sports is needed based on functional shoes using new materials to improve their performance along with cooperation in muscle activities and prevention of injury. Third, various information and energy production are possible in real time through human behavioral information, and the application of Human Machine Interface (HMI) technology through shoe-sensor-human interaction should be explored.

The crystallization behaviours of cordierite gel derived from sil-gel method and glass prepared by the conventional melting method. (용융법과 졸겔법으로 제조된 Cordierite 계 유리와 겔의 결정화 거동)

  • Park, Won-Gyu
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The crystallization behaviours of cordierite gel derived from sol-gel method and glass prepared from conventional melting method with or without $TiO_2$ as nucleants are compared. The densification temperature of gel is $810^{\circ}C$ and its chemical structure identified by IR analysis is same as that of glass melted by conventional method. The beginning crystallization temperature of gel is $965^{\circ}C$ lower than that of melted glass with 10wt% $TiO_2$, which is $978^{\circ}C$. The crystalline phases developed from gel during heat treatment are identified as spinel, $\beta$-quartz solid solution and $\alpha$-cordierite crystal and crystalline phases in case of glass are (Mg,Al)TiOn and $\beta$-quartz solid solution and $\alpha$-cordierite crystal, respectively. The crystallization in melted glass with nucleants occurs through bulk crystallization and in case of that without nucleants surface crystallization occurs, while the crystallization in gel is internal crystallization from interface between particles formed after densification.

  • PDF

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • Lee, Hyo-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

CdSe Nanocrystal Quantum Dots Based Hybrid Heterojunction Solar Cell

  • Jeong, So-Myung;Eom, S.;Park, H.;Lee, Soo-Hyoung;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.93-93
    • /
    • 2010
  • Semiconductor nanocrystal quantum dots (NQDs) have recently attracted considerable interest for use in photovoltaics. Band gaps of NQDs can be tuned over a considerable range by varying the particle size thereby allowing enhance absorption of solar spectrum. NQDs, synthesized using colloidal routes, are solution processable and promise for a large-area fabrication. Recent advancements in multiple-exciton generation in NQD solutions have afforded possible efficiency improvements. Various architectures have attempted to utilize the NQDs in photovoltaics, such as NQD-sensitized solar cell, NQD-bulk-heterojuction solar cell and etc. Here we have fabricated CdSe NQDs with the band gap of 1.8 eV to 2.1 eV on thin-layers of p-type organic crystallites (1.61 eV) to realize a donor-acceptor type heterojuction solar cell. Simple structure as it was, we could control the interface of electrode-p-layer, and n-p-layer and monitor the following efficiency changes. Specifically, surface molecules adsorbed on the NQDs were critical to enhance the carrier transfer among the n-layer where we could verify by measuring the photo-response from the NQD layers only. Further modifying the annealing temperature after the deposition of NQDs on p-layers allowed higher conversion efficiencies in the device.

  • PDF

Development of Nuclear Piping Integriry Expert System (II) -System Development and Case Studies- (원자력배관 건전성평가 전문가시스템 개발(II) -시스템 개발 및 사례해석-)

  • Jeon, Hyeon-Gyu;Heo, Nam-Su;Kim, Yeong-Jin;Park, Yun-Won;Choe, Yeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.1015-1022
    • /
    • 2001
  • The objective of this paper is to develop an expert system called NPIES for nuclear piping integrity. This paper describes the structure and the development strategy of the NPIES system. The NPIES system consists of 3 part; the data input part, the analysis part and the output part. The data input part consists of the material properties database module and the suer interface module. The analysis part consists of the LEFM, CDFD, J/T, limit load modules and the 12 analysis routines for different cracks and loading conditions are provided respectively. Analysis results are presented to screen, printer and text file in the output part. Several case studies on circumferentially cracked piping were performed to evaluate the accuracy and the usefulness of the code. Maximum piping loads predicted by the NPIES system agreed well with those by the 3-dimensional finite element analysis. In addition, even if the material properties were not fully given, the NPIES system provided reasonable evaluation results with the predicted material properties inferred from the material properties database module.

Numerical Study on Draining from Cylindrical Tank Using Stepped Drain Port (계단형 배수구를 가진 원통 용기에서의 배수 과정에 관한 수치해석 연구)

  • Son, Jong Hyeon;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1043-1050
    • /
    • 2014
  • An air-core vortex is generated during draining after stirring a rotating cylindrical tank or after filling it with water. The formation of the air-core vortex and the time of its formation are dependent on drain conditions such as the dimensions of the tank, the initial rotation or stirring speed, and the shape of the drain port. In this study, a draining process using a two-stage drain port was numerically investigated. The length and radius of the first drain stage located in the lower part of the drain port were kept constant, whereas the radius of the second drain stage was varied for simulating the draining process. The simulation was conducted by considering an axisymmetric swirling flow for all cases. The declining water level was monitored by an interface capturing method. Further, the effects of the radius of the second drain stage on the time of formation of the air-core vortex and the internal flow structure were investigated.