• Title/Summary/Keyword: Interface property

Search Result 568, Processing Time 0.034 seconds

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

A self-portrait of the information society: An Arguments on the SNS users' Responsibilities

  • Seo, Ran-Sug
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.159-172
    • /
    • 2020
  • Social networking services (SNS) are developing significantly with the Internet and smartphones. It's a friendly social media, but if you think deeply about it, you'll find that it has a variety of faces. It is a communication tool between users, a medium for delivering information, an infrastructure for providing applications, and a community where people with common interests gather. In recent years, business tools, shopping and payment methods are also being swallowed. The influence of the spread of SNS on the real world is also expanding, and the work being dealt with from a sociological perspective is also increasing. Also, if you pay attention to the technical aspects of SNS, it is composed of various technical elements, such as infrastructure that handles large-scale access, user interface that supports comfortable use, and big data analysis to understand people's behavior more deeply. However, I usually use it as usual. However, if you look through SNS, you can see that the situation is surprisingly profound and multifaceted. This study began by looking at the history and current status of SNS and attempted to find its status through comparison with other media. From the point of view of relationship with society, it can be a risk and legal issue when using SNS, such as crimes using bad social media or social media. It is also necessary to comment on the activities on SNS or the guidelines established by the operators. Therefore, various legal issues on SNS will be discussed. Also, as an example of using SNS, I will introduce an example of using SNS in disaster response. From a more technical point of view, you will receive commentary on SNS's network-based technology and SNS's information use, and these articles will help you understand and use SNS safely and help you further utilize or develop SNS.

Mechanical Properties of Natural Rubber/Acrylonitrile-Butadiene Rubber Blends and Their Adhesion Behavior with Steel Cords (Natural Rubber/Acrylonitrile-Butadiene Rubber 블렌드의 기계적 물성과 강선과의 접착거동)

  • Sohn, Bong-Young;Nah, Chong-Woon
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • Mechanical properties and their adhesion behavior with zinc- and brass-plated steel cords of natural rubber/acrylonitrile-butadiene blend compounds were investigated as a function of blend ratio. The Mooney viscosity and stress relaxation time were found to be lowered with increasing NBR content. Tensile modulus generally increased with increasing NBR content. Tensile stress at break stayed constant up to about 40 phr and showed minimum at $50{\sim}60 phr$, and thereafter increased with increasing NBR content. Strain at break decreased linearly below 50 phr, and above the level it showed nearly constant value. Based on the abrupt drops in elastic modulus and tan ${\delta}$ peak, the glass transition temperature of NR and NBR were found to be -55 and $-10^{\circ}C$, respectively. In the case of NR/NBR blend compounds, two distinct transition points were observed and each transition position was not affected by NBR level indicating an incompatible nature of NR/NBR blend system. The pullout force and rubber coverage decreased to the level of about 40% to that of pure m compound, when the 50 phr of NR was replaced by NBR. However, the pure NBR compound showed the comparable adhesion performance with NR(${\sim}90%$). The sulfur concentration was found to become lower with the increased NBR content at the adhesion interface based on the Auger spectrometer results, representing a lack of adhesion layer formation, and this was explained for a possible cause of low adhesion performance with adding NBR.

  • PDF

Characteristics and Physical Property of Tungsten(W) Related Diffusion Barrier Added Impurities (불순물을 주입한 텅스텐(W) 박막의 확산방지 특성과 박막의 물성 특성연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.518-522
    • /
    • 2008
  • The miniaturization of device size and multilevel interlayers have been developed by ULSI circuit devices. These submicron processes cause serious problems in conventional metallization due to the solubility of silicon and metal at the interface, such as an increasing contact resistance in the contact hole and interdiffusion between metal and silicon. Therefore it is necessary to implement a barrier layer between Si and metal. Thus, the size of multilevel interconnection of ULSI devices is critical metallization schemes, and it is necessary reduce the RC time delay for device speed performance. So it is tendency to study the Cu metallization for interconnect of semiconductor processes. However, at the submicron process the interaction between Si and Cu is so strong and detrimental to the electrical performance of Si even at temperatures below $200^{\circ}C$. Thus, we suggest the tungsten-carbon-nitrogen (W-C-N) thin film for Cu diffusion barrier characterized by nano scale indentation system. Nano-indentation system was proposed as an in-situ and nanometer-order local stress analysis technique.

Nexus based Quality Inspection Support Model for Defect Prevention of Architectural Finishing Works (하자예방정보 넥서스 기반 건축마감공사 품질점검 지원 모델)

  • Lee, Hye-Rin;Cho, Dong-Hyun;Park, Sang-Hun;Koo, Kyo-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.5
    • /
    • pp.59-67
    • /
    • 2017
  • At the completion of the construction, various finishing processes are concentrated. This imposes a burden on the on-site manager and imposes on experience based quality control, thereby causing deviations in the quality of construction depending on supervisor or worker's individual competence. In addition, the information related to quality control is frequently scattered in various types of documents such as specifications and drawings, and checkpoints are frequently omitted. It is necessary to provide a tool that can effectively provide the practitioner before or during the inspection work by systematically storing the information related to the defect prevention and linking them in a mutually referential state. This paper proposes an quality inspection support model that can systematically store necessary information on activity or room basis for the quality check of the apartment house finishing work. Establish a defect prevention information base and a information nexus by linking specifications, design standards, checklists, regulations, defect cases, and drawings to the finishing process and the rooms. Based on this, information registration and search interface are presented. It can contribute to securing a certain level of construction quality or more by suggesting a frame that can be utilized by linking various defects prevention information with the focus on closing activity and room.

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF

Convergence Study on Damage and Static Fracture Characteristic of the Bonded CFRP structure with Laminate angle (적층 각도를 가진 CFRP 접착 구조물의 파손 및 정적 파괴 특성에 관한 융합 연구)

  • Lee, Jung-Ho;Kim, Eundo;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.155-161
    • /
    • 2019
  • As composite is the light weight material whose durability and mechanical property are more superior than the existing general material. By taking notice of the composite with light weight, this study was about to investigate the static fracture characteristic of the bonded CFRP structure jointed with adhesive. Also, CFRP double cantilever beam with the variable of laminate angle was designed and the static fracture analysis was carried out. The laminate angles of CFRP double cantilever beam designed for this study were $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ individually. As the study result, the specimen with the laminate angle of $45^{\circ}$ was shown to have the durability better than those with the layer angles of $30^{\circ}$ and $45^{\circ}$. It was checked that the specimen with the laminate angle of $30^{\circ}$ had the weakest durability among all specimens. The damage data of the bonded CFRP structure by laminate angle could be secured through this study result. As the damage data of bonded interface obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Software Package for Pipe Hydraulics Calculation for Single and Two Phase Flow (배관 유동의 주요 변수계산을 위한 소프트웨어 시스템의 개발)

  • Chang, Jaehun;Lee, Gunhee;Jung, Minyoung;Baek, Heumkyung;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.628-636
    • /
    • 2019
  • In various industrial processes, piping serves as a link between unit processes and is an essential installation for internal flow. Therefore, the optimum design of the piping system is very important in terms of safety and cost, which requires the estimation of the pressure drop, flow rate, pipe size, etc. in the piping system. In this study, we developed a software that determines pressure drop, flow rate, and pipe size when any two of these design variables are known. We categorized the flows into single phase, homogeneous two phase, and separated two phase flows, and applied suitable calculation models accordingly. We also constructed a system library for the calculation of the pipe material, relative roughness, fluid property, and friction coefficients to minimize user input. We further created a costing library according to the piping material for the calculation of the investment cost of the pipe per unit length. We implemented all these functions in an integrated environment using a graphical user interface for user convenience, and C # programming language. Finally, we verified the accuracy of the software using literature data and examples from an industrial process with obtained deviations of 1% and 8.8% for the single phase and two-phase models.

Synthesis and Characterization of Interfacial Properties of Sorbitan Laurate Surfactant (Sorbitan Laurate 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Seul;Kim, ByeongJo;Lee, JongGi;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The critical micelle concentration (CMC) of sorbitan laurate SP 20 surfactant in this paper was near $7.216{\times}10^{-4}mol/L$ and the surface tension at CMC was about 26.0 mN/m, which showed higher CMC and lower surface tension than those of octylphenol ethoxylate octylphenol ethoxylate (OPE) 10 surfactant. Dynamic surface tension measurement using a maximum bubble pressure tensiometer showed that the adsorption rate at the interface between air and surfactant solution was found to be slower with SP 20 surfactant, presumably due to a low mobility of SP 20 surfactant monomer. The contact angle of SP 20 surfactant solution was observed to decrease with an increase in surfactant concentration and showed a larger value than that of OPE 10 surfactant solution. Half-life time for foams generated with 1 wt% surfactant solution was also larger with SP 20 surfactant, which indicated higher foam stability with SP 20 surfactant. Dynamic behavior study reveals that the solubilization of n-decane oil was much lower with SP 20, which is in good agreement with experimental results of foam stability, contact angle and CMC. Dynamic interfacial tension measurement by a spinning drop tensiometer shows that interfacial tensions at equilibrium condition in both systems were almost the same but the time required to reach equilibrium was longer with SP 20.