DOI QR코드

DOI QR Code

Software Package for Pipe Hydraulics Calculation for Single and Two Phase Flow

배관 유동의 주요 변수계산을 위한 소프트웨어 시스템의 개발

  • Chang, Jaehun (Department of Biological and Chemical Engineering, Hanbat National University) ;
  • Lee, Gunhee (Department of Biological and Chemical Engineering, Hanbat National University) ;
  • Jung, Minyoung (Department of Biological and Chemical Engineering, Hanbat National University) ;
  • Baek, Heumkyung (Doftech Corporation) ;
  • Lee, Changha (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Oh, Min (Department of Biological and Chemical Engineering, Hanbat National University)
  • 창재훈 (한밭대학교 화학생명공학과) ;
  • 이건희 (한밭대학교 화학생명공학과) ;
  • 정민영 (한밭대학교 화학생명공학과) ;
  • 백흠경 (도프텍 주식회사) ;
  • 이창하 (연세대학교 화공생명공학과) ;
  • 오민 (한밭대학교 화학생명공학과)
  • Received : 2019.02.28
  • Accepted : 2019.04.23
  • Published : 2019.10.01

Abstract

In various industrial processes, piping serves as a link between unit processes and is an essential installation for internal flow. Therefore, the optimum design of the piping system is very important in terms of safety and cost, which requires the estimation of the pressure drop, flow rate, pipe size, etc. in the piping system. In this study, we developed a software that determines pressure drop, flow rate, and pipe size when any two of these design variables are known. We categorized the flows into single phase, homogeneous two phase, and separated two phase flows, and applied suitable calculation models accordingly. We also constructed a system library for the calculation of the pipe material, relative roughness, fluid property, and friction coefficients to minimize user input. We further created a costing library according to the piping material for the calculation of the investment cost of the pipe per unit length. We implemented all these functions in an integrated environment using a graphical user interface for user convenience, and C # programming language. Finally, we verified the accuracy of the software using literature data and examples from an industrial process with obtained deviations of 1% and 8.8% for the single phase and two-phase models.

다양한 산업 공정에서 배관은 각 단위공정 사이의 연결 매개체의 역할을 하며, 내부의 유동에 있어 필수적인 장치이다. 따라서 배관의 최적설계는 안전과 비용의 측면에서 매우 중요한 문제이며, 설계 시 필수적인 사항은 배관 내 압력강하 및 유속, 배관 지름 등을 결정하는 일이다. 본 연구에서는 배관 지름 및 유속이 정해졌을 때 발생하는 압력강하, 배관의 압력강하 및 유속이 정해졌을 때의 배관 지름, 배관 지름 및 압력강하가 정해졌을 때의 유속을 결정하는 소프트웨어를 개발하였다. 배관 내 유동을 단일 상 흐름, 균질 2 상 유동, 분리 2 상 유동으로 구분하였으며 이에 따라 적절한 계산 모델을 적용하였다. 파이프의 재질 및 상대 거칠기, 유체의 물성치, 마찰계수의 계산을 위한 시스템 라이브러리를 구축하여 사용자의 입력을 최소화하였다. 배관 재질에 따른 가격 라이브러리를 구축하여 단위 길이당 배관 투자 비용의 산출을 가능하도록 구성하였다. 이러한 모든 기능은 사용자 편의를 위한 그래픽 사용자 인터페이스를 이용한 통합 환경에서 구현할 수 있으며, C# 언어를 개발 언어로 사용하였다. 소프트웨어의 정확도를 문헌 자료와 실 수행 과제의 예제를 통하여 검증하였으며 단일 상의 경우 1% 미만, 2 상의 경우 최고 8.8% 정도의 차이를 보였으며, 이에 따라 개발된 소프트웨어가 실제 공정의 계산에 유용하게 쓰일 수 있음을 알 수 있었다.

Keywords

References

  1. Cihang Lu, Ran Kong and Shouxu Qiao, Joshua Larimer, Seungjin Kim, Stephen Bajorek, Kirk Tien, Chris Hoxie "Frictional Pressure Drop Analysis for Horizontal and Vertical Air-water Two-phase Flows in Different Pipe Sizes," Nucl Eng. Des 332, 147-148(2018). https://doi.org/10.1016/j.nucengdes.2018.03.036
  2. https://en.wikipedia.org/wiki/Bernoulli%27s_principle.
  3. William M. Deen, "Introduction to Chemical Engineering Fluid Mechanics, Cambridge series in chemical engineering," 1rd ed., Cambridge Series In Chemical Engineering, 30-46(2016).
  4. Yin, J. M., Bullard, C. W. and Hrnjak, P. S., "Single-Phase Pressure Drop Measurements in a Microchannel Heat Exchanger," Heat Transfer Eng., 23, 3-12(2002).
  5. Ali Celen, Ahmet Selim Dalkilic and Somchai Wongwises, "Experimental Analysis of the Single Phase Pressure Drop Characteristics of Smooth and Microfin Tubes," Int. J. Heat Mass Tranf, 46, 58-66(2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.05.010
  6. Awad, M. M. and Muzychka, Y. S., "Effective Property Models for Homogeneous Two-phase Flow," Experimental Thermal and Fluid Science, 33, 106-108(2008). https://doi.org/10.1016/j.expthermflusci.2008.07.006
  7. Hamad, F. A., Faraji, F., Santim, C. G. S., Basha, N. and Ali, Z., "Investigation of Pressure Drop in Horizontal Pipes with Different Diameters," Int. J. Multiphase Flow, 91, 120-128(2017). https://doi.org/10.1016/j.ijmultiphaseflow.2017.01.007
  8. Lee, S., Hong, S.-H. and Lee, J. N. and Lee, S. W., "A Study on 2-Phase Flow in the LNG Pipeline," The Korean Institute of Gas 153-154(1998).
  9. J Mreno Quiben "Experimental and Analytical Study of Twophase Pressure Drops During Evaporation in Horizontal Tubes," Lausanne, EPFL (2005).
  10. Lockhart, R. W. and Martinelli, R. C., "Proposed Correlation of Data for Isothermal Two-phase, Two-component Flow in Pipe," Chem. Eng. Prog., 45-1, 39-48(1945).
  11. Chisholm, D., "Pressure Gradients Due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels," Int. J. Heat Mass Tranf, 16, 347-358(1973). https://doi.org/10.1016/0017-9310(73)90063-X
  12. Friedel, L., "Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow," European Two-phase Flow Group Meeting, Ispra, Italy, June, Paper E2(1979).
  13. Gronnerud, R., "Investigation of Liquid Hold-up, Flow-resistance and Heat Transfer in Circulation Type of Evaporators, Part iv: Two-phase Flow Resistance in Boiling Refrigerans," Bull.de l'Inst.du Froid, 127-138(1979).
  14. Bankoff, S. G., "A Variable Density Single-Fluid Model for Two-Phase Flow with Particular Reference to Steam-Water Flow," J. Heat Transfer, 82(4), 265-272(1960). https://doi.org/10.1115/1.3679930
  15. Muller-Steinhagen, H. and Heck, K., "A Simple Friction Pressure Correlation for Two-phase Flow in Pipes," Chem. Eng. Process, 20, 297-308(1986). https://doi.org/10.1016/0255-2701(86)80008-3
  16. Beattie, D. R. H. and Whalley, P. B., "A Simple Two-phase Frictional Pressure Drop Calculation Method," Int. J. Multiphase Flow, 8, 83-87(1982). https://doi.org/10.1016/0301-9322(82)90009-X
  17. Bandel, J., "Druckverlust und Warmeubergang bei der Verdampfung Siedender Kaltemittel im Druchstromten Waagerechten Rohr," Chemie Ingenieur Technik, 45(6), 345-436(1973). https://doi.org/10.1002/cite.330450602
  18. Olujic, Z., "Predicting Two-phase Flow Friction Loss in Horizontal Pipes," Chem. Eng. (N.Y), 92(13), 45-50(1985).
  19. Hart, J., Hamersma, P. J. and Fortuin, J. M. H., "Correlations Predicting Frictional Pressure Drop and Liquid Holdup During Horizontal Gas-liquid Pipe Flow with a Small Liquid Holdup," Int. J. Multiphase Flow, 15, 947-964(1989). https://doi.org/10.1016/0301-9322(89)90023-2
  20. Hamad, F. A., Faraji, F., Santim, C. G. S., Basha, N. and Ali, Z., "Investigation of Pressure Drop in horizontal pipes with different diameters," Int. J. Multiphase Flow, 91, 120-128(2017). https://doi.org/10.1016/j.ijmultiphaseflow.2017.01.007
  21. Neeraj Agrawal, Souvik Bhattacharyya, "Homogeneous Versus Separated Two Phase Flow Models: Adiabatic Capillary Tube Flow in a Transcritical $CO_2$ Heat Pump," Int J. Therm Sci., 47, 1555-1562(2008). https://doi.org/10.1016/j.ijthermalsci.2007.12.008
  22. John R. Thome, "Engineering Data Book III" Wolverine Tube, Inc Ch 13.1-10.
  23. https://www.nuclear-power.net/nuclear-engineering/fluid-dynamics/major-head-loss-friction-loss/relative-roughness-of-pipe/.
  24. https://www.hitechoverseas.com/jindal-ss-304-pipes-price-list.html.
  25. https://www.globaltecheng.com/ProductCart/pc/Pipe-c13.htm?pageStyle=l&ProdSort=1&page=25&idCategory=13&SFID=&SFNAME=&SFVID=&SFVALUE=&SFCount=-1&viewAll=yes
  26. https://www.plumbingsupply.com/copperpipe.html.
  27. https://www.grainger.com/category/plumbing/pipe-tubing-and-fittings/pipe.
  28. Frank M. White, Fluid Mechanics, 7rd ed. McGraw-Hill, 372-373 ex)6.7, 6.10 (2011).
  29. https://archiveweb.epfl.ch/ltcm.epfl.ch/files/content/sites/ltcm/files/shared/import/migration/COURSES/TwoPhaseFlowsAndHeatTransfer/Chapter%2013%20Solutions.pdf.
  30. https://www.slideshare.net/ajaytiwari35574/96326047-processdescriptionoglpgtrain4.