• Title/Summary/Keyword: Interface monitoring

Search Result 767, Processing Time 0.026 seconds

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

Design of User Concentration Classification Model by EEG Analysis Based on Visual SCPT

  • Park, Jin Hyeok;Kang, Seok Hwan;Lee, Byung Mun;Kang, Un Gu;Lee, Young Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.129-135
    • /
    • 2018
  • In this study, we designed a model that can measure the level of user's concentration by measuring and analyzing EEG data of the subjects who are performing Continuous Performance Test based on visual stimulus. This study focused on alpha and beta waves, which are closely related to concentration in various brain waves. There are a lot of research and services to enhance not only concentration but also brain activity. However, there are formidable barriers to ordinary people for using routinely because of high cost and complex procedures. Therefore, this study designed the model using the portable EEG measurement device with reasonable cost and Visual Continuous Performance Test which we developed as a simplified version of the existing CPT. This study aims to measure the concentration level of the subject objectively through simple and affordable way, EEG analysis. Concentration is also closely related to various brain diseases such as dementia, depression, and ADHD. Therefore, we believe that our proposed model can be useful not only for improving concentration but also brain disease prediction and monitoring research. In addition, the combination of this model and the Brain Computer Interface technology can create greater synergy in various fields.

Malaria Epidemic Prediction Model by Using Twitter Data and Precipitation Volume in Nigeria

  • Nduwayezu, Maurice;Satyabrata, Aicha;Han, Suk Young;Kim, Jung Eon;Kim, Hoon;Park, Junseok;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.588-600
    • /
    • 2019
  • Each year Malaria affects over 200 million people worldwide. Particularly, African continent is highly hit by this disease. According to many researches, this continent is ideal for Anopheles mosquitoes which transmit Malaria parasites to thrive. Rainfall volume is one of the major factor favoring the development of these Anopheles in the tropical Sub-Sahara Africa (SSA). However, the surveillance, monitoring and reporting of this epidemic is still poor and bureaucratic only. In our paper, we proposed a method to fast monitor and report Malaria instances by using Social Network Systems (SNS) and precipitation volume in Nigeria. We used Twitter search Application Programming Interface (API) to live-stream Twitter messages mentioning Malaria, preprocessed those Tweets and classified them into Malaria cases in Nigeria by using Support Vector Machine (SVM) classification algorithm and compared those Malaria cases with average precipitation volume. The comparison yielded a correlation of 0.75 between Malaria cases recorded by using Twitter and average precipitations in Nigeria. To ensure the certainty of our classification algorithm, we used an oversampling technique and eliminated the imbalance in our training Tweets.

Three-dimensional numerical modelling of geocell reinforced soils and its practical application

  • Song, Fei;Tian, Yinghui
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This paper proposes a new numerical approach to model geocell reinforced soils, where the geocell is described as membrane elements and the complex interaction between geocell and soil is realized by coupling their degrees of freedom. The effectiveness and robustness of this approach are demonstrated using two examples, i.e., a geocell-reinforced foundation and a large scale retaining wall project. The first example validates the approach against established solutions through a comprehensive parametrical study to understand the influence of geocell on the improvement of bearing capacity of foundations. The study results show that reducing the geocell pocket size has a strong effect on improving the bearing capacity. In addition, when the aspect ratio maintains the same value, the bearing capacity improvement with increasing geocell height is insignificant. Comparing with the field monitoring and measurement in the project, the second example investigates the application of the approach to practical engineering projects. This paper provides a practically feasible and efficient modelling approach, where no explicit interface or contact is required. This allows geocell reinforced soils in large scale project can be effectively modelled where the mechanism for complex geocell-soil interaction can be explicitly observed.

A Study on Implementation of Health Index Monitoring System based on Open Hardware (오픈 하드웨어 기반 생활보건지수 모니터링 시스템 구현 구현에 관한 연구)

  • Lee, Do-Gyun;Kim, Minyoung;Cho, Jin-Hwan;Jang, Si-Woong;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.409-412
    • /
    • 2019
  • 국내의 미세먼지 문제가 심각해짐에 따라 대기 오염에 관한 분야의 관심이 높아지고 있다. 현재 정부는 최근 IT 융합 기술의 발전에 따라 빅데이터, 클라우드, 등 사물인터넷 기반 장치의 확산 및 고도화를 위한 기술 접목에 많은 지원과 관심을 보이며 기상청을 통해서는 국내 대기 오염으로 인한 사회적 비용을 낮추기 위해 공공 데이터(Application Program Interface, API)를 활용 다양한 정보 서비스를 지원하고 있다. 하지만 기상청에서 제공하는 정보 서비스에는 한계가 있다. 특히 기상청에서 운영되고 있는 장비들은 고가의 장비로써 비용 및 공간적 설치 제약이 따르며, 약 15km 범위를 한 개소로 담당하여 기상 데이터에 대한 신뢰도에 문제가 발생하고 있다. 본 논문에서는 오픈 하드웨어 기반 소형 기상관측 장비를 활용한 기상지수 및 미세먼지 측정 데이터 제공 시스템을 제안한다. 본 논문에서 제안한 시스템은 기상 계측이 필요한 지역의 작은 공간을 활용, 기상관측 장비를 통해 관측된 데이터와 기상청에서 제공하는 생활 기상지수 알고리즘을 토대로 해당 지역에 맞는 맞춤형 정보를 제공하여 사회적 비용을 낮출 수 있을 것으로 기대한다.

  • PDF

Detection of flaw in steel anchor-concrete composite using high-frequency wave characteristics

  • Rao, Rajanikant;Sasmal, Saptarshi
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.341-359
    • /
    • 2019
  • Non-monolithic concrete structural connections are commonly used both in new constructions and retrofitted structures where anchors are used for connections. Often, flaws are present in anchor system due to poor workmanship and deterioration; and methods available to check the quality of the composite system afterward are very limited. In case of presence of flaw, load transfer mechanism inside the anchor system is severely disturbed, and the load carrying capacity drops drastically. This raises the question of safety of the entire structural system. The present study proposes a wave propagation technique to assess the integrity of the anchor system. A chemical anchor (embedded in concrete) composite system comprising of three materials viz., steel (anchor), polymer (adhesive) and concrete (base) is considered for carrying out the wave propagation studies. Piezoelectric transducers (PZTs) affixed to the anchor head is used for actuation and the PZTs affixed to the surrounding concrete surface of the concrete-anchor system are used for sensing the propagated wave through the anchor interface to concrete. Experimentally validated finite element model is used to investigate three types of composite chemical anchor systems. Studies on the influence of geometry, material properties of the medium and their distribution, and the flaw types on the wave signals are carried out. Temporal energy of through time domain differentiation is found as a promising technique for identifying the flaws in the multi-layered composite system. The present study shows a unique procedure for monitoring of inaccessible but crucial locations of structures by using wave signals without baseline information.

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

Implementation of DevOps based Hybrid Model for Project Management and Deployment using Jenkins Automation Tool with Plugins

  • Narang, Poonam;Mittal, Pooja
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.249-259
    • /
    • 2022
  • Project management and deployment has gone through a long journey from traditional and agile to continuous integration, continuous deployment and continuous monitoring. Software industry benefited with the latest buzzword in the development process, DevOps that not only escalates software productivity but at the same time enhances software quality. But the implementation and assessment of DevOps practices is expository as there are no guidelines to assess and improvise DevOps application in software industries. Hence, there was a need to develop a hybrid model to assist software practitioners in DevOps implementation. The intention behind this paper is to implement the already proposed DevOps hybrid model using suggested tool chains including Jenkins, Selenium, GitLab, Ansible and Nagios automation tools through Jenkins project management environment and plugins. To achieve this implementation objective, a java application is developed with a web-based graphical interface. Further, in this paper, different challenges and benefits of Jenkins implementation shall also be outlined. The paper also presents the effectiveness of DevOps based Model implementation in software organizations. The impact of considering other automation tools and models can also be considered as a part of further research.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

Operation result of the Cryogenic and Mechanical Measurement System for KSTAR (KSTAR 저온 및 구조 계측 시스템 운전 결과)

  • Kim, Y.O.;Chu, Y.;Yonekawa, H.;Bang, E.N.;Lee, T.G.;Baek, S.H.;Hong, J.S.;Lee, S.I.;Park, K.R.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.