• Title/Summary/Keyword: Interface Wave

Search Result 467, Processing Time 0.028 seconds

Current Technologies and Prospects of Electromagnetic Wave Absorbers

  • Kim, Dong Il;Kim, Soo Jeong;Kwak, Hyun Soo;Joo, Yang Ick
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • With the rapidly increasing and widespread use of electronic and controlling equipment, the control of the electromagnetic (EM) wave environment becomes an important social issue. To solve the electromagnetic compatibility (EMC, both electromagnetic interface and electromagnetic susceptibility) problems, in this paper, we introduce the countermeasure techniques focused on EM wave absorbers for EMC problems in our laboratory at the Korea Maritime and Ocean University. The current technologies related to EM wave absorbers to solve EMC problems will first be described. The prospects of and a design for EM wave absorbers including a smart absorber with a heat radiating function will then be suggested.

A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics (초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • It is well recognized recently that ultrasonic technique is one of the most widely used methods of nondestructive evaluation to characterize material properties of nonconventional engineering materials. Therefore it is very important to understand physical phenomenon on propagation behavior of elastic wave in these materials, which is directly associated with ultrasonic signals in the test. In this study, the theoretical analysis on multi-scattering of harmonic elastic wave due to the particulate with interface between matrix and fiber in metal matrix composites(MMCs) was done on the basis of Lax's quasi-crystalline approximation and extinction theorem. SiC particulate (SiCp) reinforced A16061-T6 composite material was chosen for this analysis. From this analysis, frequency dependences of phase velocity and amplitude attenuation of effective plane wave due to the change of volume fraction of SiC particulate were clearly found. It was also shown that the interface condition between matrix and fiber in MMCs gives a direct effect on the variation of phase velocity of plane wave in MMCs.

  • PDF

EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS (공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법)

  • Yeom, G.S.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF

Recent Ultrasonic Guided Wave Inspection Development Efforts

  • Rose, Joseph L.;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.371-382
    • /
    • 2001
  • The recognition of such natural wave guides as plates, rods, hollow cylinders, multi-layer structures or simply an interface between two materials combined with an increased understanding of the physics and wave mechanics of guided wave propagation has led to a significant increase in the number of guided wave inspection applications being developed each year. Of primary attention Is the ability to inspect partially hidden structures, hard to access areas, and teated or insulated structures. An introduction to some physical consideration of guided waves followed by some sample problem descriptions in pipe, ice detection, fouling detection in the foods industry, aircraft, tar coated structures and acoustic microscopy is presented in this paper. A sample problem in Boundary Element Modeling is also presented to illustrate the move in guided wave analysis beyond detection and location analysis to quantification.

  • PDF

A Study on Pulse Wave Measurement System Based on USB Driver Transmission System (USB Driver 전송시스템 기반의 맥파 측정 시스템에 관한 연구)

  • Kim, E.G.;Park, M.K.;Han, S.S.;Huh, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1914-1915
    • /
    • 2007
  • The period and strength of the pulse on the radial artery are important physiological factors, and they have been used to diagnosis in both Western and Eastern countries for a long time and has been developed as a unique method of diagnosis at each countries. Recently, there are a lot of systems which can give diagnosis information by recording the pulse wave and analyzing the characteristics of the pulse shape. This study describes the Pulse-Wave Measurement System which is able to measure the pulse wave signal using piezoresistive sensor and the pulse wave signal measured by the developed system is transmitted to a computer on the basis of the USB Driver. It has finally shown the the pulse wave signal measured by the sender is appeared to the host PC in real time. The Pulse-Wave Measurement System used the piezoresistive sensor to measure the pulse wave signal and the differential amplifier(AD620) to amplify the pulse wave signal which is small signal. And it used the ADC to convert analog to digital for the measured analog signal and the interface with a computer. It transmitted the measured pulse signal through USB transmission module to the host computer and Labview tool shows it. This Pulse-Wave measurement system will afford comvenience of detecting pulse wave to user related to oriental medicine.

  • PDF

Behavior of Oil-Water Interface between Tandem Fences (이중 유벽 사이의 기름과 물의 계면의 거동)

  • Kang Kwan Hyoung;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • The disturbance of oil-water interface confined between tandem fences caused by a sequence of traveling vortices below the interface is investigated. The traveling vortices are assumed to be those detached from the tip of the fore fence. The potential flow is assumed and the density interface is replaced as a sheet of vortex. The shape of the interface is predicted by tracing a finite number of marker particles placed at the interface. The velocity of the marker particles is determined by the Biot-Savart integral along the vortex sheet plus the contribution from the traveling point vortices. The rate of change of vortex-sheet strength is predicted by using an evolution equation for vorticity. The calculated results obtained for various conditions demonstrate that the large amplitude of interfacial wave following the moving vortek can be generated by the vortices.

  • PDF

Effective brain-wave DB building system using the five senses stimulation (오감자극을 활용한 효율적인 뇌파 DB구축 시스템)

  • Shin, Jeong-Hoon;Jin, Sang-Hyeon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.227-236
    • /
    • 2007
  • Ubiquitous systems have grown explosively over the few years. Nowadays users' needs for high qualify service lead a various type of user terminals. One of various type of user interface, various types of effective human computer interface methods have been developed. In many researches, researchers have focused on using brain-wave interface, that is to say, BCI. Nowadays, researches which are related to BCI are under way to find out effective methods. But, most researches which are related to BCI are not centralized and not systematic. These problems brought about ineffective results of researches. In most researches related in HCI, that is to say - pattern recognition, the most important foundation of the research is to build correct and sufficient DB. But there is no effective and reliable standard research conditions when researchers are gathering brain-wave in BCI. Subjects as well as researchers do not know effective methods for gathering DB. Researchers do not know how to instruct subjects and subjects also do not know how to follow researchers' instruction. To solve these kinds of problems, we propose effective brain-wave DB building system using the five senses stimulation. Researcher instructs the subject to use the five senses. Subjects imagine the instructed senses. It is also possible for researchers to distinguish whether brain-wave is right or not. In real time, researches verify gathered brain-wane data using spectrogram. To verify effectiveness of our proposed system, we analyze the spectrogram of gathered brain-wave DB and pattern. On the basis of spectrogram and pattern analysis, we propose an effective brain-wave DB building method using the five senses stimulation.

  • PDF

CFD Study for Wave Run-up Characteristics Around a Truncated Cylinder with Damper

  • Zhenhao Song;Bo Woo Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.225-237
    • /
    • 2023
  • In this study, numerical simulations for a single fixed truncated circular cylinder in regular waves were conducted to investigate the nonlinear wave run-up under various dampers and wave period conditions. The present study used the volume of fluid (VOF) technique to capture the air-water interface. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation with the k- 𝜖 turbulence model was solved using the commercial computational fluid dynamics (CFD) software STAR-CCM+. First, a systematic spatial convergence study was conducted to assess the performance and precision of the present numerical wave tank. The numerical scheme was validated by comparing the numerical results of wave run-up on a bare truncated cylinder with the experimental results, and a good agreement was achieved. Then, a series of parametric studies were carried out to examine the wave run-up time series around the truncated cylinder with single and dual dampers in terms of the first- and second-order harmonic and mean set-up components. Additionally, the local wave field and the flow velocity vectors adjacent to the cylinder were evaluated. It was confirmed that under short wave conditions, the high position of the damper led to a noticeable increase in the wave run-ups with significant changes in the first- and second-order harmonic components.

Effect of Interface Hole Shape on Dynamic Interface Crack Propagation (계면에 존재하는 구멍의 모양이 동적 계면균열전파에 미치는 영향)

  • Yin, Hai-Long;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1217-1222
    • /
    • 2002
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the hole (existed along the path of the crack propagation) shape on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

Dynamic Slant Interface Crack Propagation Behavior under Initial Impact Loading (초기 혼합모드 동적 하중을 받는 경사계면균열의 동적 전파거동)

  • Lee, Eok-Seop;Park, Jae-Cheol;Yun, Hae-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The effects of slant interface in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity. The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamic stress field around the dynamically propagating inclined interface crack tip in the three point bending specimens. The dynamic load is applied by a hammer dropped from 0.08m high without initial velocity. The dynamic crack propagation velocities and dynamic stresses field around the interface crack tips are investigated. Theoretical dynamic isochromatic fringe loops are compared with the experimental reults. It is interesting to note that the crack propagating velocity becomes comparable to the Rayleigh wave speed of the soft material of a specimen when slant angle decreases.

  • PDF