• Title/Summary/Keyword: Interface Shear Stress

Search Result 294, Processing Time 0.031 seconds

Shear Strength of an Aluminum Alloy Bonded with a DP-460 Adhesive: Single Lap-shear Joints

  • Kim, Hyun-Bum;Nishida, Tomohisa;Oguma, Hiroyuki;Naito, Kimiyoshi
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Single lap-shear joints (SLJ) specimens with and without partial round fillets were fabricated to measure the average shear strength of adhesives. The effects of the length of the adherend on the SLJ specimens were also investigated. An epoxy adhesive was used to bond aluminum alloy. Tensile tests were performed on the adhesive bulk specimens to measure the mechanical properties. The finite element analysis (FEA) method was used to measure the adhesive stress distributions, i.e., the peel and shear stresses, on the bonded part. The experimental results revealed that the specimen consisting short length of adherend and without the partial round fillets exhibited the smallest average shear strength of adhesive among the investigated specimens. FEA revealed that the low average shear strength for the specimen with a short adherend length was caused by high stress concentrations on the adhesive at the edge of the bonded part.

Shear Performance Evaluation at the Interface Between CLT and Concrete (구조용 집성판(CLT)-콘크리트 경계면의 전단성능 평가)

  • Park, Keum-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 2021
  • An experimental study was carried out to evaluate the shear performance at the interface composed of structural laminates and concrete. The main variables are the number of CLT layers and the shape of the shear connector. The number of CLT layers consisted of 3 and 5 layers. A total of 6 test specimens for shear performance evaluation were prepared in the form of a shear connector, a direct screw type and a vertically embedded type. As a result of the experiment, similar behavior was shown in all specimens, regardless of the number of layers, including direct screw type (SC series) and vertically embedded type (VE series). The behavior at the joint surface was damaged due to the occurrence of initial shear cracks, expansion of shear groove cracks, and splaying at the interface after the maximum load.After the maximum load, the shear strength decreased gradually due to the effect of the shear connector. It can be seen that the shear strength of all specimens is determined by shear and compression stress failure of concrete at the interface of the notch joint.

On Oil-Water Interface of Oil Layer Contained in Tandem Oil Fences (이중유벽 사이에 가두어진 기름층의 거동특성)

  • Doh D.H.;Hyun B.S.;Choi S.H.;Hong S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.1
    • /
    • pp.25-34
    • /
    • 2000
  • A panoramic-PIV technique is employed to characterize the travelling tip vortices and the profile of oil-water Interface in the tandem fence arrangement. Instantaneous as well as time-averaged velocity profiles of the water layer close to the interface were obtained to evaluate the possibility of measuring the shear stress distribution on oil-water interface. It was proven that the present technique could provide some qualify data precise enough to resolve detailed flow structures inside a shear layer formed on oil-water interface provided it is nearly stationary.

  • PDF

A study on improved analytic method for the bond stress between concrete and steel tube in CFT column (CFT기둥에서 강관과 콘크리트 부착응럭의 해석기법 개선에 관한 연구)

  • Seok, Keun-Yung;Ju, Gi-Su;Choi, Joon-Young;Chae, Seoung-Hun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.83-90
    • /
    • 2007
  • Buildings become high and large. CFT(Concrete Filled steel Tube) columns have been developed to manage effectively that loads which columns support and cross sections of columns are increased. Because CFT column is the composite structure made of two different materials, many researches have been performed to look into mechanical behaviors. This study is an analytic study about bond stress on interface between concrete core and steel tube in circular and rectangular CFT columns. ABAQUS/Standard Version 5.8 is used to analyze bond stress by bond form and position of shear-connector, and improved analystic method about mechanical characters on interface is suggested.

  • PDF

Interface slip of post-tensioned concrete beams with stage construction: Experimental and FE study

  • Low, Hin Foo;Kong, Sih Ying;Kong, Daniel;Paul, Suvash Chandra
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2019
  • This study presents experimental and numerical results of prestressed concrete composite beams with different casting and stressing sequence. The beams were tested under three-point bending and it was found that prestressed concrete composite beams could not achieve monolith behavior due to interface slippage between two layers. The initial stress distribution due to different construction sequence has little effect on the maximum load of composite beams. The multi-step FE analyses could simulate different casting and stressing sequence thus correctly capturing the initial stress distribution induced by staged construction. Three contact algorithms were considered for interaction between concrete layers in the FE models namely tie constraint, cohesive contact and surface-to-surface contact. It was found that both cohesive contact and surface-to-surface contact could simulate the interface slip even though each algorithm considers different shear transfer mechanism. The use of surface-to-surface contact for beams with more than 2 layers of concrete is not recommended as it underestimates the maximum load in this study.

New technique for repairing circular steel beams by FRP plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.171-190
    • /
    • 2022
  • In this paper, the problem of interfacial stresses in steel cantilever beams strengthened with bonded composite laminates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The original study in this paper carried out an analytical solution to estimate shear and peel-off stresses, as, interfacial stress analysis concentration under the uniformly distributed load and shear lag deformation. The theoretical prediction is compared with authors solutions from numerous researches. This phenomenon of deformation of the members, which gives probably approach on the study of interface of the reinforced structures, is called "shear lag effect". The resolution in this paper shows that the shear stress and the normal stress are significant and, are concentrated at the end of the composite plate of reinforcement, called "edge effect". A parametric study is carried out to show the effects of the variables of design and the physical properties of materials. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

A Study on the Interface Shear Strength of HDPE Textured Geomembrane (HDPE 표면처리 지오멤브레인의 경계면 전단강도에 관한 연구)

  • Kim, Sejin;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2016
  • This paper evaluates the interface shear strength of HDPE textured geomembrane. The interface shear strength between textured geomembrane and marl, and textured geomembrane and woven geotextile were measured; and the smooth geomembrane was used to evaluate the effect of "texture" on the interface shear strength. The interface shear strength was measured using a large direct shear testing device under several conditions including the presence of water, and the normal stresses that were 12, 24, 45, 100, 500, and 1,000 kPa. From testing results, it was found that there was meaningful reduction in the interface shear strength in the presence of water, but the effect of normal stress was not clear. The interface shear strength was measured to be significantly different for smooth geomembrane, whose strength was measured to be as small as half that of the textured geomembrane.

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.