• Title/Summary/Keyword: Interface Matrix

Search Result 666, Processing Time 0.031 seconds

The Corrosion Behavior of Hydrogen-Charged Zircaloy-4 Alloys (수소 장입된 Zircaloy-4 합금에서의 부식거동)

  • Kim, Seon-Jae;Kim, Gyeong-Ho;Baek, Jong-Hyeok;Choe, Byeong-Gwon;Jeong, Yo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.268-273
    • /
    • 1998
  • Standard Zircaloy-4 sheets, charged with 230-250ppm hydrogen by the gas-charging method and homogenized at $400^{\circ}C$ for 72hrs in a vacuum, were corroded in pure water and aqueous LiOH solutions using static autoclaves at $350^{\circ}C$. Their corrosion behaviors were characterized by measuring their weight gains with the corrosion time and observing their microstructures using an optical microscope and a scanning electron microscope. The elemental depth profiles for hydrogen and lithium were measured using a secondary ion mass spectrometry(S1MS) to confirm their distributions at the oxidelmetal interface. The normal Zircaloy-4 specimens corroded abruptly and heavily at the concentration of Li ions more than 30ppm in the aqueous solution. This is due to accelerations by the rapid oxidation of many Zr- hydrides formed by the large amount of absorbed hydrogen, resulting from the increased substitution of $Li^{+}$ ions with $Zr^{4+}$-sites in the oxide as the Li ion concentration increased. The specimens that had been charged with amounts of hydrogen greater than its solubility corroded early with a more rapid acceleration than normal specimens, regardless of the corrosion solutions. At longer corrosion times. however, normal specimens showed a rather accelerated corrosion rate compared to the hydrogen-charged specimens. These slower corrosion rates of the hydrogen-charged specimens at the longer corrosion times would be due to the pre-existent Zr-hydride in the matrix, which causes the hydrogen pick- up into the specimen to be depressed, when the oxide with an appropriate thickness formed.

  • PDF

Characteristics of the Brazed Joint between Superhard Alloy Particles and Carbon Steel Using BAg System Insert Metals. (은계(BAg) 삽입금속으로 접합된 초경합금 입자와 탄소강 브레이징부의 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.298-302
    • /
    • 2008
  • This study was carried out to evaluate brazing characteristics of the braze joint between superhard alloy particles and carbon steel. Two types of insert metals that made by mechanical alloying process were selected for this study. One is composed of Cu, Zn and Ag(MIM-1) and the other one is composed of Cu, Zn, Ag and Cd.(MIM-2) The chemical compositions of these insert metals were similar to AWS BAg-20 and BAg-2a system. And the commercial insert metals(CIM-1, CIM-2) were also evaluated for the comparative study. The characterization of the insert metals were conducted by wettability tests, shear tensile test and microstructural analyses. The results indicated that wettability tests displayed that MIM-1 and CIM-1 insert metals had the larger wetting angle than MIM-2 and CIM-2 and the wetting angle of the MIM-1 showed higher value than that of CIM-1. However these values are less than $25^{\circ}$ that is recommended for standard value for usual insert metals. The highest value of shear tensile tests was obtained from the brazed joint that made by MIN-1 and the value was $2.29{\times}10^2MPa$. This value is appeared to be higher or same as the commercial insert metals. The microstructures of the inserts metals were composed of Cu-rich proeutectic structure for matrix and Ag-rich eutectic structure. The braze joint between superhard alloy particles and carbon steel produced by the MIM-1(Ag-Cu-Zn) system showed sound joint showing stable microstructures. However there was also some porosities at the interface.

Mechanical Properties and Morphology of Epoxy/Polyamide/DDS/2E4MZ-CNS Reactive Blends (에폭시/폴리아미드/DDS/2E4MZ-CNS 반응성 블렌드의 형태학적 특징 및 기계적 물성)

  • Park, So-Hyun;Phuong, Thanh Vu;Song, Hyun-Woo;Park, Kyeong-Nam;Kim, Byung-Min;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.471-476
    • /
    • 2008
  • The thermal and mechanical properties and morphology of epoxy/polyamide/DDS/2E4MZ-CNS reactive blends with various amounts of polyamide were investigated. The amount of polyamide was 10, 20, and 30 phr and 2 phr of catalyst was added to the blend to cure at $180^{\circ}C$ for 30 min. By adding the catalyst, 2E4MZ-CNS, to the blend, the cure reaction occurred at a lower temperature. From the SEM images, it was found that the boundary of separated-phase was unclear and the phase was co-continuous. Without the catalyst, however, the boundary of separated-phase was clear. The control of cure temperature and morphology could be achieved by using a proper catalyst and consequently the mechanical strength increased by 20% compared to the blend without the catalyst due to the strong interaction between epoxy matrix and phase-separated polyamide at the interface.

Effect of Immersion in Water and Thermal Cycling on the Mechanical Properties of Light-cured Composite Resins (광중합형 수복용 복합레진의 기계적 성질에 미치는 수중침적과 Thermal Cycling의 영향)

  • Bae, Tae-Sung;Kim, Tae-Jo;Kim, Hyo-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.327-336
    • /
    • 1996
  • This study was performed to investigate the effec% of immersion in water and thermal cycling on the mechanical peoperties of light cured restorative composite resins. Five commerically available light-cured composite resins(Photo Clearfil A : CA, Lite-Fil A . LF, Clearril Photo Posterior CP, Prisms AP.H.. PA, 2100 : ZH) were unto The specimens of 12 m in diameter and 0.7 m in thickness were made, and an immersion in $37^{\circ}C$ water for 7 days and a thermal cycling of 1000 cycles at 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$ baths were performed. Biaxial flexure test was conducted using the ball-on-three-ball method at the crosshead speed of 0.5mm/min. In order to investigate the deterioration of composite resins during the thermal cycling test, Weibull analysis for the biaxial flexure strengths was done. Fracture surfaces and the surfaces before and after the thermal cycling test were examined by SEM. The highest Weibull modulus value of 10.09 after thermal cycling tests which means the lowest strength variation, was observed in the CP group, and the lowest value of 4.47 was obsered in the LF Group. Biaxial flexure strengths and Knoop hardness numbers significantly decreased due to the thermal cycling ($\textit{p}$< 0.01), however, they recovered when specimens were drie4 The highest biaxial flexure strength of 125.65MPa was observed in the ZH group after the thermal cycling test, and the lowest value of 64.86MPa was observed in the CA group. Biaxial flexure strengths of ZH and CP groups were higher than those of PA, CF, and CA groups after thermal cycling test($\textit{p}$< 0.05). Knoop hardness numbers of CP group after the thermal cycling test was the highest(95.47 $\pm$ 7.35kg/$mm^2$) among the samples, while that of CA group was the lowest(30.73 $\pm$ 2.58kg/$mm^2$). Knoop hardness numbers showed the significant differences between the CP group and others after the thermal cycling test(($\textit{p}$< 0.05). Fracture surfaces showed that the composite resin failure developed along the matrix resin and the filler/resin interface region, and the cracks propagated in the conical shape from the maximum tensile stress zone.

  • PDF

THE SEALING ABILITY OF OBTURATION TECHNIQUES IN OPEN APEX (개방 근첨 치아의 근관 충전방법에 따른 치근단 폐쇄효과에 관한 연구)

  • So, Hyun;Choi, Ho-Young;Choi, Kyung-Kyu;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.435-445
    • /
    • 2000
  • The purpose of this study was to compare the leakage of four different obturation techniques in conjunction with immediate apical barrier of ${\beta}$-tricalcium phosphate(TCP) in teeth with open apex. Eighty single-rooted human premolar teeth were prepared and sectioned horizontally, so maximum diameter in apex was 4mm. Apical defects that were similar to open apex, were created with #1/2 round bur and SF104R bur. The apical foramen were opened to a size 80 file extended 3mm beyond the apex. The teeth were placed into the oasis block soaked saline to simulate periapical tissue often associated with pulpless teeth and received apical barriers consisting of TCP followed by obturation using lateral condensation technique, vertical condensation technique, continuous wave technique and thermoplasticized gutta-percha injection technique. Two unobturated teeth served as positive and negative controls. Teeth were immersed in resorcinol-formaldehyde resin for S days at $4^{\circ}C$, and the resin was allowed to polymerize completely for 4 days at room temperature. Teeth were then sectioned horizontally at 1.5mm(level 1), 2.5mm(level 2) and 3.5mm(level 3) from the apex, and examined under a stereomicroscope at ${\times}40$ magnification. The photographs were taken at ${\times}40$ magnification of the filling in each level and scanned. The leakage length in tooth/resin interface was measured at each of the three levels. Each ratio of leakage was obtained by calculating the ratio of the leakage length of canal wall infiltrated with resin to the total length of the canal and was analyzed statistically(One-way ANOVA and Scheffe test). The result were as follows : 1. At the level 1, there was the least leakage in the thermoplasticized gutta-percha injection technique group(group 4), but there was statistically significant(p<0.05). 2. At the level 2, there was the least leakage in the thermoplasticized gutta-percha injection technique group(group 4), and the most leakage in the continuous wave technique group(group 3). There was statistically significant difference between the thermoplasticized gutta-percha injection technique group and the continuous wave technique group(p<0.05). 3. At the level 3, there was the least leakage in the thermoplasticized gutta-percha injection technique group(group 4), but there were no statistically significant differences between other groups(p>0.05). These results suggest that thermoplasticized gutta-percha injection technique which had 1mm apical gutta-percha matrix after the formation of TCP apical barrier, can demonstrate favorable apical sealing.

  • PDF

A Study on the Mechanical Properties of AC8A/$Al_2O_3$ Composites. (용탕단조법에 의한 AC8A/$Al_2O_3$ 복합재료의 기계적 성질에 관한 연구)

  • Kim, Ki-Bae;Kim, Kyoung-Min;Cho, Soon-Hyung;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.11 no.6
    • /
    • pp.475-481
    • /
    • 1991
  • In this study the fabrication technology and mechanical properties of AC8A/$Al_2O_3$ Composites by squeeze casting process were investigated to develope for application as the piston materials that require good friction, wear resistance, and thermal stability. AC8A/$Al_2O_3$ composistes without a porosity and the break of preform were fabricated at the melt temperature of $740^{\circ}C$, the preform temperature of $500^{\circ}C$, and mold temperature of $400^{\circ}C$ under the applied pressure of $1200kg/cm^2$ as the results of the observation of microstructures. As the results of this study, the tensile strength of AC8A/$Al_2O_3$ composites was not increased linearly with $Al_2O_3$ volume fraction and so it seemed not to agree with the rule of mixture, which had been used often in metal matrix composite. Also the tensile strength after thermal fatigue test was little different from that before the test. Consequently it was thought that AC8A/$Al_2O_3$ composites fabricated under our experimental conditions had a good thermal stability and subsequently a good interface bonding. Wear rate(i.e., volume loss per unit sliding distance) of AC8A/$Al_2O_3$ composites was decreased with $Al_2O_3$ volume fraction and the sliding speed at both room temperature and $250^{\circ}C$ and so there was a good correlation between wear rate and hardness. Also the wear rate of AC/8A20% $Al_2O_3$ composities was obtained the value of $1.65cm^3/cm$ at sliding speed of 1.14m/sec as compared with about $3.0\;{\times}10^{-8}cm^3/cm$ hyereutectie Al-Si alloy(Al-16%Si-2%Cu-1%Fe-1%Ni), which applied presently for piston materials. The wear behavior of $Al_2O_3$ composites was observed to a type of abrasive wear by the SEM view of wear surface.

  • PDF

Evaluation of marginal leakage of bulk fill flowable composite resin filling with different curing time using micro-computed tomography technology (Bulk fill 유동성 복합레진의 변연 누출에서 다른 중합시간의 영향에 대해 마이크로시티를 이용한 평가)

  • Kim, Eun-Ji;Lee, Kyu-Bok;Jin, Myoung-Uk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.184-193
    • /
    • 2016
  • Purpose: To evaluate marginal leakage of bulk fill flowable composite resin filling with different curing time by using microcomputed tomography technology. Materials and Methods: 30 previously extracted human molars were randomly divided into 6 groups based upon restorative system and different curing time. Class II cavities (vertical slot cavities) were prepared. An individual metallic matrix was used to build up the proximal wall. The SonicFill or SureFil SDR flow was inserted into the preparation by using 1 bulk increment, followed by light polymerization for different curing times. The different exposure times were 20, 40, and 60 seconds. All specimens were submitted to 5,000 thermal cycles for artificial aging. Micro-CT scanning was performed by using SkyScan 1272. One evaluator assessed microleakage of silver nitrated solution at the resin-dentin interface. The 3D image of each leakage around the restoration was reconstructed with CT-Analyser V.1.14.4. The leakage was analyzed with the Mann-Whitney test. Results: Significant differences were observed between the light curing times, but no significant differences were found between the bulk fill composite resins. Increasing in the photoactivation time resulted in greater microleakage in all the experimental groups. Those subjected to 60 seconds of light curing showed higher microleakage means than those exposed for 20 seconds and 40 seconds. Conclusion: Increasing the photoactivation time is factor that may increase marginal microlekage of the bulk fill composite resins. Further, micro-CT can nondestructively detect leakage around the resin composite restoration in three dimensions.

The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation (금속-세라믹용 Pd-Ag-Sn-Au계 합금의 모의소성 시 산화처리 후 급랭에 의한 경화 효과)

  • Shin, Hye-Jeong;Kim, Min-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.197-206
    • /
    • 2017
  • The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation was investigated by means of hardness test, field emission scanning electron microscopic observations, and X-ray diffraction analysis. The hardness decreased by ice-quenching after oxidation, which was induced by the homogenization of the ice-quenched specimen. The decreased hardness by ice-quenching after oxidation was recovered from the wash stage which was the first stage of the remaining firing process for bonding porcelain. After wash stage, the hardness of the ice-quenched specimens decreased during the subsequent porcelain firing process. But the final hardness of the ice-quenched specimens after oxidation was higher than that of the specimens cooled at stage 0 after oxidation. The increase in hardness of the specimens during the first firing process was caused by the lattice strains generated at the interface between the face-centered cubic Pd-Ag-rich matrix and the face-centered tetragonal Pd3(Sn, Ga, In) precipitate. The decrease in hardness of the specimens during the remaining firing process was caused by the microstructural coarsening.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars under Accelerated Alkaline Condition (급속 알칼리 환경하에서의 비닐에스터/FRP 보강근의 재료성능 저하 특성에 관한 실험적 연구)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • There is increasingly more research focusing on the application of FRP reinforcing bars as an alternative material for steel reinforcing bars, but most such research look at short term behavior of FRP reinforced structures. In this study, the microscopic analysis and tensile behavior of Basalt and Glass FRP bars under freezing-thawing and alkaline conditions were experimentally evaluated. After 100 cycles of the freezing and thawing, the tensile strength and elastic modulus of FRP bars decreased by about 5%. In the case of microstructure of FRP bars during the initial 20 days, no significant damages of FRP bar sections were found under $20^{\circ}C$ alkaline solution; however, the specimens immersed in $60^{\circ}C$ alkaline solution were found to experience resin dissolution, fiber damage and the separation of the resin-fiber interface. In the alkaline environment, the strength decrease of about 10% occurred in the environment at $20^{\circ}C$ for 100 days, but the tensile strength of FRPs exposed for 500 days decreased by 50%. At temperature of $40^{\circ}C$ and $60^{\circ}C$, an abrupt decrease in the strength was observed at 50 and 100 days. Especially, the tensile strength decrease of Basalt fiber Reinforced Polymer bars showed more severe degradation due to the damage caused by dissolution of resin matrix and fiber swelling in alkaline solution. Therefore, in order to improve the long-term performance of the surface braided FRPr reinforcing bars, surface treatment is required to ensure alkali resistance.