• Title/Summary/Keyword: Interface Element

Search Result 1,315, Processing Time 0.03 seconds

A new 3D interface element for three dimensional finite element analysis of FRP strengthened RC beams

  • Kohnehpooshi, O.;Noorzaei, J.;Jaafar, M.S.;Saifulnaz, M.R.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.257-271
    • /
    • 2011
  • The analysis of interfacial stresses in structural component has been the subject of several investigations but it still requires more effort and studies. In this study a general three-dimensional interface element has been formulated for stress and displacement analyses in the interfacial area between two adjacent plate bending element and brick element. Interface element has 16 nodes with 5 degrees of freedom (DOF) in each node adjacent to plate bending element and 3 DOF in each node adjacent to brick element. The interface element has ability to transfer three translations from each side of interface element and two rotations in the side adjacent to the plate element. Stiffness matrix of this element was formulated and implemented in three-dimensional finite element code. Application of this element to the reinforced concrete (RC) beam strengthened with fiber reinforced polymer (FRP) including variation of deflection, slip between plate and concrete, normal and shear stresses distributions in FRP plates have been verified using experimental and numerical work of strengthened RC beams carried out by some researchers. The results show that this interface element is effective and can be used for structural component with these types of interface elements.

The Finite Element Analysis of Foundation Layer by Introducing Interface Element (접합요소를 도입한 기초지반의 유한요소해석)

  • 양극영;이대재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 2002
  • The purpose of this research is to develop computational procedures for studying nonlinear soil-structure interaction Problems. In orders to study soil-structure interaction behavior, the finite element analysis for the strip footing subjected to both vortical and lateral loads, and foundation layer reinforced with sheet pile are considered, interface elements are used between the footing and the soil to model the interaction behavior The main analyzed results are as follows; 1. For the prediction of settlement and lateral displacement, the result due to interface element was evaluated larger then without interface element. 2. For the determination of ultimate bearing capacity, the value using interface element appeared smaller by 12%, which was safe. 3. The horizontal and vertical displacement of strip footing affected by the presence of interface element.

Finite Element Analysis of Reinforced Earth Wall Behavior (보강토 옹벽의 거동에 관한 유한요소 해석)

  • 최인석;장연수;조광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

Interface element method (IEM) for a partitioned system with non-matching interfaces (일치하지 않는 경계를 갖는 분리된 시스템을 위한 계면 요소법)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.324-329
    • /
    • 2001
  • A novel method for non-matching interfaces on the boundaries of the finite elements in partitioned domains is presented by introducing interface elements in this paper. The interface element method (IEM) satisfies the continuity conditions exactly through interfaces without recourse to the Lagrange multiplier technique. The moving least square (MLS) approximation in the present study is implemented to construct the shape functions of the interface elements. Alignment of the boundaries of sub-domains in the MLS approximation and integration domains provides a consistent numerical integration due to one form of rational functions in an integration domain. The compatibility of displacements on the boundaries of the finite elements and the interface elements is always preserved in this method, and the completeness of the shape functions of the interface elements guarantees the convergence of numerical solutions. The numerical examples show that the interface element method is a useful tool for the analysis of a partitioned system and for a global-local analysis.

  • PDF

NONCONFORMING SPECTRAL ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS

  • Kumar, N. Kishore
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.761-781
    • /
    • 2014
  • An exponentially accurate nonconforming spectral element method for elasticity systems with discontinuities in the coefficients and the flux across the interface is proposed in this paper. The method is least-squares spectral element method. The jump in the flux across the interface is incorporated (in appropriate Sobolev norm) in the functional to be minimized. The interface is resolved exactly using blending elements. The solution is obtained by the preconditioned conjugate gradient method. The numerical solution for different examples with discontinuous coefficients and non-homogeneous jump in the flux across the interface are presented to show the efficiency of the proposed method.

Finite element analyses of the stability of a soil block reinforced by shear pins

  • Ouch, Rithy;Ukritchon, Boonchai;Pipatpongsa, Thirapong;Khosravi, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.1021-1046
    • /
    • 2017
  • The assessment of slope stability is an essential task in geotechnical engineering. In this paper, a three-dimensional (3D) finite element analysis (FEA) was employed to investigate the performance of different shear pin arrangements to increase the stability of a soil block resting on an inclined plane with a low-interface friction plane. In the numerical models, the soil block was modeled by volume elements with linear elastic perfectly plastic material in a drained condition, while the shear pins were modeled by volume elements with linear elastic material. Interface elements were used along the bedding plane (bedding interface element) and around the shear pins (shear pin interface element) to simulate the soil-structure interaction. Bedding interface elements were used to capture the shear sliding of the soil on the low-interface friction plane while shear pin interface elements were used to model the shear bonding of the soil around the pins. A failure analysis was performed by means of the gravity loading method. The results of the 3D FEA with the numerical models were compared to those with the physical models for all cases. The effects of the number of shear pins, the shear pin locations, the different shear pin arrangements, the thickness and the width of the soil block and the associated failure mechanisms were discussed.

Thermal Stress Analysis of Drums Brakes by Finite Element Method (유한요소법에 의한 드럼 브레이크의 열응력 해석)

  • Goo, Byeong-Choon;Seo, Jung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.831-836
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In this paper, heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on tile thermal stress was checked. The analysis was performed by ABAQUS/Standard code.

  • PDF

Thermoelastic Contact Analysis of Drums Brakes by Finite Element Method (유한요소법에 의한 드럼 브레이크의 열탄성 접촉해석)

  • 구병춘;서정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.173-180
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In the first part, the influence of the s-cam load angles and elastic modulus of the pad on the contact pressure distribution between pad and drum was checked by a three dimensional model. In the second part heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on the thermal distribution is checked. The analysis was performed by ABAQUS/Standard code.

  • PDF

Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law

  • Hosseini-Toudeshky, Hossein;Goodarzi, M. Saeed;Mohammadi, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.41-56
    • /
    • 2013
  • Initiation and growth of delamination is a great concern of designers of composite structures. Interface elements with de-cohesive constitutive law in the content of continuum damage mechanics can be used to predict initiation and growth of delamination in single and mixed mode conditions. In this paper, an interface element based on the cohesive zone method has been developed to simulate delaminatoin growth of post-buckled laminate under fatigue loading. The model was programmed as the user element and user material by the "User Programmable Features" in ANSYS finite element software. The interface element is a three-dimensional 20 node brick with small thickness. Because of mixed-mode condition of stress field at the delamination-front of post-buckled laminates, a mixed-mode bilinear constitutive law has been used as user material in this model. The constitutive law of interface element has been verified by modelling of a single element. A composite laminate with initial delamination under quasi-static compressive Loading available from literature has been remodeled with the present approach. Moreover, it will be shown that, the closer the delamination to the free surface of laminate, the slower the delamination growth under compressive fatigue loading. The effects of laminate configuration on delamination growth are also investigated.

A Study of 3-Dimension Plate- Elastic Foundation Interaction Analysis by Finite Element Method (판과 탄성지반의 상호작용을 고려한 3차원 유한요소해석에 관한 연구)

  • 황창규;강재순
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.7-18
    • /
    • 1992
  • This paper is a basic study of three by finite element method. Plate and medium. Plate is discretized 4 node p melt. At the interface between plate a melt is adopted for considering plate Measured vertical displacement out by plate foundation interaction finite zion is followed as ; 1. as being interface element adopts dation interaction finite element 2. As being interface element and platefoundation interaction finite 3. As being interface element adopte Therefore, post processing that as.

  • PDF