• Title/Summary/Keyword: Interface Edge Crack

Search Result 40, Processing Time 0.028 seconds

Viscoelastic Analysis of an Interface Edge Crack in a Bonded Polymeric Film

  • Lee, Sang-Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.35-39
    • /
    • 2010
  • Interfacial stress singularity induced in an analysis model consisting of the polymeric thin film and the elastic substrate has been investigated using the boundary element method. The interfacial singular stresses between the viscoelastic thin film and the elastic substrate subjected to a uniform moisture ingression are investigated for the case of a small interfacial edge crack. It is assumed that moisture effects are assumed to be analogous to thermal effects. Then, the overall stress intensity factor for the case of a small interfacial edge crack is computed. The numerical procedure does not permit calculation of the limiting case for which the edge crack length vanishes.

Boundary Element Analysis of Stress Intensity Factor for Interface Edge Crack in A Unidirectional Composite (단일방향 복합재료의 공유면에 존재하는 모서리 균열의 경계요소해석)

  • 이상순;김정규
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-83
    • /
    • 1996
  • The overall stress intensity factor for edge crack located at the interface between fiber and matrix of a unidirectional graphite/epoxy laminate model subjected to a transverse tensile strain have been computed using the boundary element method. Such crack might be generated due to a stress singularity in the vicinity of the free surface. The amplitude of complex stress intensity factor has the constant value at large crack lengths.

  • PDF

An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials (이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.

Dynamic Photoelastic Experimental Method for Propagating Interfacial Crack of Bimaterials (이종재료의 진전 계면 균열에 대한 동적 광탄성 실험법)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.292-297
    • /
    • 2000
  • In this research, the dynamic photoelastic experimental hybrid method for bimaterial is introduced. Dynamic biaxial loading device is developed, its strain rate is 31.637 s-1 and its maximum impact load is 20 ton. Manufactured methods for model of the dynamic photoelastic experiment for bimaterial are suggested. They are bonding method(bonding material: AW106, PC-1) and molding method. In the bonding method, residual stress is not occurred in the manufactured bimaterial. Crack is propagated along the interface or sometimes deviated from the interface. While in the molding method, residual stress is occurred in the manufactured bimaterial. Crack is always deviated from the interface and propagated in the epoxy region(softer materila). In order to propagate with constant velocity along the interface of bimaterial with arbitrary stiffer material, edge crack should be located along the interface of the acute angle side of the softer material in the bimaterial.

  • PDF

Prediction of Crack Propagation Path Using Boundary Element Method in IC Packages (반도체 패키지의 경계요소법에 의한 균열진전경로의 예측)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • Applications of bonded dissimilar materials such as integrated circuit(IC) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in bonded joints of dissimilar materials. In order to investigate the IC package crack propagating from the edge of die pad and resin, the fracture parameters of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method(BEM). From these results, crack propagation direction and path by thermal stress in the IC package were numerically simulated with boundary element method.

Mechanism of failure in the Semi-Circular Bend (SCB) specimen of gypsum-concrete with an edge notch

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.81-91
    • /
    • 2022
  • The effects of interaction between concrete-gypsum interface and edge crack on the failure behavior of the specimens in senicircular bend (SCB) test were studied in the laboratory and also simulated numerically using the discrete element method. Some quarter circular specimens of gypsum and concrete with 5 cm radii and hieghts were separately prepared. Then the semicircular testing specimens were made by attaching one gypsum and one concrete sample to one another using a special glue and one edge crack is produced (in the interface) by do not using the glue in that part of the interface. The tensile strengths of concrete and gypsum samples were separately measured as 2.2 MPa and 1.3 MPa, respectively. during all testing performances a constant loading rate of 0.005 mm/s were stablished. The proposed testing method showed that the mechanism of failure and fracture in the brittle materials were mostly governed by the dimensions and number of discontinuities. The fracture toughnesses of the SCB samples were related to the fracture patterns during the failure processes of these specimens. The tensile behaviour of edge notch was related to the number of induced tensile cracks which were increased by decreasing the joint length. The fracture toughness of samples was constant by increasing the joint length. The failure process and fracture pattern in the notched semi-circular bending specimens were similar for both methods used in this study (i.e., the laboratory tests and the simulation procedure using the particle flow code (PFC2D)).

Investigation on the failure mechanism of steel-concrete steel composite beam

  • Zou, Guang P.;Xia, Pei X.;Shen, Xin H.;Wang, Peng
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1183-1191
    • /
    • 2016
  • The internal crack propagation, the failure mode and ultimate load bearing capacity of the steel-concrete-steel composite beam under the four-point-bend loading is investigated by the numerical simulation. The results of load - displacement curve and failure mode are in good agreement with experiment. In order to study the failure mechanism, the composite beam has been modeled, which part interface interaction between steel and concrete is considered. The results indicate that there are two failure modes: (a) When the strength of the interface is lower than that of the concrete, failure happens at the interface of steel and concrete; (b) When the strength of the interface is higher than that of the concrete, the failure modes is cohesion failure, i.e., and concrete are stripped because of the shear cracks at concrete edge.

Numerical analysis of interface crack problem in composite plates jointed with composite patch

  • Cetisli, Fatih;Kaman, Mete O.
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.203-220
    • /
    • 2014
  • Stress intensity factors are numerically investigated for interfacial edge crack between two dissimilar composite plates jointed with single side composite patch. Variation of stress intensity factor under Mode I loading condition is examined for different material models and fiber orientation angles of composite plates and patch. ANSYS 12.1 finite element analysis software is used to obtain displacements of crack surfaces in the numerical solution and repaired plates are modeled in three dimensions. Obtained results are presented in the form of graphs. It is found that fiber orientation angle of composites is an effective parameter on interfacial stress intensity factor.

Prediction of Initiation Location and Direction of Fretting Fatigue Crack (프레팅 피로 균열의 발생 위치 및 방향 예측)

  • Huh, Yong-Hak;R. E. Edwards;M.W. Brown;E.R. de Ios Rios
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1185-1192
    • /
    • 2003
  • Governing parameters for determination of the location of crack initiation and direction of crack initiation were investigated by performing fretting fatigue tests and analysis on Al 2024-T351. Fatigue tests were carried out using biaxial fatigue machine. It was shown that the dominant fatigue crack tended to initiate at the outer edge of one of the four bridge pads, growing at an angle beneath a pad, before turning perpendicular to the orientation of the axial load. Distribution of stresses generated during fretting fatigue loading along the interface was calculated by elastic FE simulation. It can be known that the location of crack initiation can be predicted by using the maximum tangential stress range. Futhermore, the crack initiation direction can also be predicted by a maximum tangential stress range.

Evaluation of Free-Edge Delamination in Composite Laminates (복합재 적층판의 자유단 층간분리의 평가)

  • 김인권;공창덕;방조혁
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • A simplified method for determining the three mode(I, II, III) components of the strain energy release rate of free-edge delaminations in composite laminates is proposed. The interlaminar stresses are evaluated using the interface moment and the interface shear forces which are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is analysed by using a generalized quasi-three dimensional classical laminated plate theory. The analysis provides closed-form expression for the three components of the strain energy release rate. The analyses are performed for composite laminates subjected to uniaxial tension, with free-edge delaminations located symmetrically and asymmetrically with respect to the laminate midplane. The analysis results agreed with a finite element solution using the virtual crack closure technique.

  • PDF