• 제목/요약/키워드: Interface Bonding

검색결과 714건 처리시간 0.022초

Experimental study on damage and debonding of the frozen soil-concrete interface under freeze-thaw cycles

  • Liyun Tang;Yang Du;Liujun Yang;Xin Wang;Long Jin;Miaomiao Bai
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.663-671
    • /
    • 2023
  • Freeze-thaw cycles induce strength loss at the frozen soil-concrete interface and deterioration of bonding, which causes construction engineering problems. To clarify the deterioration characteristics of the interface under the freeze-thaw cycle, a frozen soil-concrete sample was used as the research object, an interface scanning electron microscope test under the freeze-thaw cycle was carried out to identify the micro index information, and an interface shear test was carried out to explore the loss law of interface shear strength under the freeze-thaw cycle. The results showed that the integrity of the interface was destroyed, and the pore number and pore size of the interface increased significantly with the number of freeze-thaw cycles. The connection form gradually deteriorates from surface-to-surface contact to point-to-surface contact and point-to-point contact, and the interfacial shear strength decreases the most at 0-3 freeze-thaw cycles, with small decreases from to 3-8 cycles. After 12 freeze-thaw cycles, the interfacial shear strength tends to be stable, and shear the failure occurs internally in the soil.

유한요소해석을 이용한 교면포장의 필요부착강도 산정 (Calculation of Required Bond Strength for Bridge Deck Overlay Using Finite Element Analysis)

  • 권혁;장흥균;정원경;김동호;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.191-196
    • /
    • 2002
  • The bonding strength of the interface between the actual bridge concrete deck and overlay was primarily affected by the shear that depended on the flexural behavior than pure tensile, but the field bonding test measured bonding strength by the pure tensile due to simplicity and field applicability. Therefore, the purpose this study was to evaluate the required direct bond strength for bridge deck overlay using Finite element analysis with the many variavles such as bridge deck types, span length, material properties, lanes, and loading types. The commercial program LUSAS was used in analysis. The analysis results were compared to the value of specification currently used in highway construction site.

  • PDF

극한 환경 MEMS용 SiCOI 구조 제작 (Fabrication of SiCOI Structures for MEMS Applications in Harsh Environments)

  • 정귀상;정연식;류지구
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.264-269
    • /
    • 2004
  • This paper describes on an advanced technology of 3C-SiC/Si(100) wafer direct bonding using PECVD oxide to intermediate layer for SiCOI(SiC-on-Insulator) structure because it has an attractive characteristics such as a lower thermal stress, deposition temperature, more quick deposition rate and higher bonding strength than common used poly-Si and thermal oxide. The PECVD oxide was characterized by ATR-FTIR. The bonding strength with variation of HF pre treatment condition was measured by tensile strength measurement system. After etch-back using TMAH solution, roughness of 3CSiC surface crystallinity and bonded interface was measured and analyzed by AFM, XRD, and SEM respectively.

계층적 접촉 탐색방법을 이용한 3-D 초소성 성형/확산접합의 공정설계(I) (Analysis of 3-D Superplastic Forming/Diffusion Bonding Process Using a Hierarchical Contact Searching Method(I))

  • 강영길;송재선;홍성석;권용남;이정환;김용환
    • 소성∙가공
    • /
    • 제16권2호
    • /
    • pp.138-143
    • /
    • 2007
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The coulomb friction law is used for interface friction between tool and material. Pressure-time relationship for a given optimal strain rate is calculated by stress and pressure values at the previous iteration step. In order to improve the contact searching, hierarchical search algorithm has been applied and implemented into the code. Various geometries including sandwich panel and 3 sheet shape for 3-D SPF/DB model are analyzed using the developed program. The validity fer the analysis is verified by comparison between analysis and results in the literature.

홈파기를 이용한 새로운 실리콘 직접접합 기술 (A Novel Silicon Direct Bonding Technology using Groove Matrix)

  • 김은동;김남균;김상철;박종문;이승환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.81-84
    • /
    • 1995
  • A reliable bonding between two silicon wafers, regularly grooved and non-grooved, was done by the direct boning technology, It is Presented that high structural duality was realized not only at the bended interface but in the bulk, commensurate with the filling of artificial grooves, which would be attributed to the dislocation-gettering capability of groove free-surfaces during annealing. The groove filling would be explained with mass-transport phenomena assisted by the dislocation movement from initial contact boundaries toward groove surfaces. Intrinsic voids can be easily removed by aid of the grooves. The proposed method yielded also an intimate bonding not only between {111} wafers strongly misoriented and slightly inclined to {111} basal plane but even between {111} and {100} orientation wafers.

  • PDF

Acoustic Microscopy를 이용한 무정형 PEEK의 접합 계면 연구 (Acoustic Microscopy Study on Self-Bonded Interface of Amorphous PEEK)

  • 조범래
    • 한국재료학회지
    • /
    • 제6권9호
    • /
    • pp.963-971
    • /
    • 1996
  • 세라믹 강화 복합 재료의 모재로서 사용되는 무정형 PEEK가 보여주는 self-bonding 현상의 주 기구인 PEEK체인들의 확산(interdiffusion)과 뒤엉킴(entanglement)이 일어나기 위하여 PEEK의 접합 면에서 반드시 선행되어 일어나야 하는 젖음성의 정도에 미치는 접합 공정 변수의 영향을 C-mode acoustic microscopy를 이용하여 고찰하였다. 또한 self-bonding 된 PEEK시편들의 전단 변형시 전단 하중의 증가에 따라 일어나는 접합 면에서의 debonding 정도를 측정함으로써 접합 면에서 일어나는 파괴 거동을 관찰하였다. 각각의 접합 조건에서의 젖음성의 정도는 시간과 압력의 증가에 따라 다소 증가함을 보여 주었으나, 접합 온도와는 거의 무관함을 보여 주었다. 또한 전단 파괴 시험시 각각의 접합 조건 하에서 개발된 self-bonding강도의 80%-90%이상의 전단 하중이 가해진 후부터 debonding이 시작되어, 이 후 하중이 증가함에 따라 급속도로 진행되어 파괴가 일어남을 알 수 있었다.

  • PDF

상아질과 접착제 간의 계면양상 (INTERFACIAL MORPHOLOGY BETWEEN DENTIN AND ADHESIVES)

  • 강지영;허복
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.183-192
    • /
    • 1995
  • The purpose of this study was to evaluate the effect of smear layer management on the interfacial morphology between dentin bonding system and dentin. Clearfil New Bond, Scotchbond Multipurpose, Prisma Universal Bond 3 and X-R Bond were used on the cervical dentinal surfaces of bovine incisor teeth. All of the dentin bonding systems were labeled with fluorescene in primer and rhodamine B in adhesive. Specimens of 2~3mm thichness were prepared by longitudinal and labiolingual sectioning. The interface between dentin bonding system and dentin was observed by flouresence imaging with a confocal laser scanning microscope. Following results were obtained. 1. In the specimen of Clearfil New Bond, dentinal tubules were widened by destruction of peritubular dentin in the course of treatment with phosphoric acid of high concentration. 2. Hybrid layer was observed in the specimen of Scotchbond Multipurpose and X-R Bond. 3. In the specimen of Prisma Universal Bond 3, the penetraton of adhesive was not observed clearly.

  • PDF

The Metallization of Diamond Grits

  • Sung, James-C.;Hu, Shao-Chung;Chang, Yen-Shuo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1134-1135
    • /
    • 2006
  • A revolutionary "Active Braze Coated Diamond" (ABCD) has been developed for bonding diamond grits firmly in the metal matrix. The molten braze is wetted and reacted with diamond to form strong chemical bond at the interface so that the diamond does not become knocked out of tools. The ABC is a nickel alloy that can form metallurgical diffusion bondswith the metal matrix. In essence, ABCD turns diamond into a metal grain so that the diamond tools can be made by conventional powder metallurgical process without being concerned about the poor bonding between matrix metal powder and the diamond as before.

  • PDF

저온소성 기판과 Cu와의 동시소성에 미치는 CuO의 첨가효과 (The Influence of CuO on Bonding Behaviors of Low-Firing-Substrate and Cu Conductor)

  • 박정현;이상진
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.381-388
    • /
    • 1994
  • A new process which co-fires the low-firing-substrate and copper conductor was studied to achieve good bond strength and low sheet resistance of conductor. Cupric oxide is used as the precursor of conductive material in the new method and the firing atmosphere of the new process is changed sequently in air H2N2. The addition of cupric oxide and variations of firing atmosphere permited complete binder-burnout in comparison with the conventional method and contributed to the improvement of resistance and bonding behaviors. The potimum conditions of this experiment to obtain the satisfactory resistance and bond strength are as follows (binder-burnout temperature in air; 55$0^{\circ}C$, reducing temperature in H2; 40$0^{\circ}C$ for 30 min, ratio of copper and cupric oxide; 60:40~30:70 wt%). The bonding mechanism between the substrate and metal was explained by metal diffusion layer in the interface and the bond strength mainly depended on the stress caused by the difference of shrinkage and thermal expansion coefficient between the substrate and metal.

  • PDF

CFRP로 보강된 콘크리트 보의 온도 변화에 따른 영향 분석 (Analysis of Effects on Concrete Beam Strengthened with CFRP Plate according to Temperature Change)

  • 조홍동;한상훈;이승수;신진환
    • 한국안전학회지
    • /
    • 제18권2호
    • /
    • pp.79-85
    • /
    • 2003
  • In this study, the behavior characteristics of specimen strengthened with CFRP plate were analyzed according to the change of temperature. CFRP plate itself has a good resistance at the high temperature, but epoxy used as a adhesive is lost its bonding strength at the relatively low temperature. Therefore, this study carries out experiment on the beams slot-bonded with CFRP plates in order to maintain the successful bonding strength of epoxy at high temperature. It is presented that the range of glass transition temperature is 60-8$0^{\circ}C$ and RC beams slot-bonded with CFRP plate shows more increasing resistance and failure load than that of interface bonded at the high temperature.