• Title/Summary/Keyword: Interest Prediction

Search Result 469, Processing Time 0.022 seconds

Analysis and Prediction Algorithms on the State of User's Action Using the Hidden Markov Model in a Ubiquitous Home Network System (유비쿼터스 홈 네트워크 시스템에서 은닉 마르코프 모델을 이용한 사용자 행동 상태 분석 및 예측 알고리즘)

  • Shin, Dong-Kyoo;Shin, Dong-Il;Hwang, Gu-Youn;Choi, Jin-Wook
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • This paper proposes an algorithm that predicts the state of user's next actions, exploiting the HMM (Hidden Markov Model) on user profile data stored in the ubiquitous home network. The HMM, recognizes patterns of sequential data, adequately represents the temporal property implicated in the data, and is a typical model that can infer information from the sequential data. The proposed algorithm uses the number of the user's action performed, the location and duration of the actions saved by "Activity Recognition System" as training data. An objective formulation for the user's interest in his action is proposed by giving weight on his action, and change on the state of his next action is predicted by obtaining the change on the weight according to the flow of time using the HMM. The proposed algorithm, helps constructing realistic ubiquitous home networks.

Railway Object Recognition Using Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 시설물 인식에 관한 연구)

  • Luo, Chao;Jwa, Yoon Seok;Sohn, Gun Ho;Won, Jong Un;Lee, Suk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • The objective of the research is to automatically recognize railway objects from MLS data in which 9 key objects including terrain, track, bed, vegetation, platform, barrier, posts, attachments, powerlines are targeted. The proposed method can be divided into two main sub-steps. First, multi-scale contextual features are extracted to take the advantage of characterizing objects of interest from different geometric levels such as point, line, volumetric and vertical profile. Second, by considering contextual interactions amongst object labels, a contextual classifier is utilized to make a prediction with local coherence. In here, the Conditional Random Field (CRF) is used to incorporate the object context. By maximizing the object label agreement in the local neighborhood, CRF model could compensate the local inconsistency prediction resulting from other local classifiers. The performance of proposed method was evaluated based on the analysis of commission and omission error and shows promising results for the practical use.

Study on Collaborative Filtering Algorithm Considering Temporal Variation of User Preference (사용자 성향의 시간적 변화를 고려한 협업 필터링 알고리즘에 관한 연구)

  • Park, Young-Yong;Lee, Hak-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.526-529
    • /
    • 2003
  • Recommender systems or collaborative filtering are methods to identify potentially interesting or valuable items to a particular user Under the assumption that people with similar interest tend to like the similar types of items, these methods use a database on the preference of a set of users and predict the rating on the items that the user has not rated. Usually the preference of a particular user is liable to vary with time and this temporal variation may cause an inaccurate identification and prediction. In this paper we propose a method to adapt the temporal variation of the user preference in order to improve the predictive performance of a collaborative filtering algorithm. To be more specific, the correlation weight of the GroupLens system which is a general formulation of statistical collaborative filtering algorithm is modified to reflect only recent similarity between two user. The proposed method is evaluated for EachMovie dataset and shows much better prediction results compared with GrouPLens system.

The First Finding of the Lichen Solorina saccata at an Algific Talus Slope in Korea

  • Park, Jung Shin;Kim, Dong-Kap;Kim, Chang Sun;Oh, Seunghwan;Kim, Kwang-Hyung;Oh, Soon-Ok
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.276-287
    • /
    • 2020
  • An algific talus slope is composed of broken rocks with vents connected to an ice cave, releasing cool air in summer and relatively warmer air in winter to maintain a more stable microclimate all year round. Such geological features create a very unusual and delicate ecosystem. Although there are around 25 major algific talus slopes in Korea, lichen ecology of these areas had not been investigated to date. In this study, we report the first exploration of lichen diversity and ecology at an algific talus slope, Jangyeol-ri, in Korea. A total of 37 specimens were collected over 2017-2018. Morphological and sequencing analysis revealed 27 species belonging to 18 genera present in the area. Of particular interest among these species was Solorina saccata, as it has previously not been reported in Korea and most members of genus Solorina are known to inhabit alpine regions of the Northern Hemisphere. We provide here a taxonomic key for S. saccata alongside molecular phylogenetic analyses and prediction of potential habitats in South Korea. Furthermore, regions in South Korea potentially suitable for Solorina spp. were predicted based on climatic features of known habitats around the globe. Our results showed that the suitable areas are mostly at high altitudes in mountainous areas where the annual temperature range does not exceed 26.6 ℃. Further survey of other environmental conditions determining the suitability of Solorina spp. should lead to a more precise prediction of suitable habitats and trace the origin of Solorina spp. in Korea.

Development of Data Mining Algorithm for Implementation of Fine Dust Numerical Prediction Model (미세먼지 수치 예측 모델 구현을 위한 데이터마이닝 알고리즘 개발)

  • Cha, Jinwook;Kim, Jangyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.595-601
    • /
    • 2018
  • Recently, as the fine dust level has risen rapidly, there is a great interest. Exposure to fine dust is associated with the development of respiratory and cardiovascular diseases and has been reported to increase death rate. In addition, there exist damage to fine dusts continues at industrial sites. However, exposure to fine dust is inevitable in modern life. Therefore, predicting and minimizing exposure to fine dust is the most efficient way to reduce health and industrial damages. Existing fine dust prediction model is estimated as good, normal, poor, and very bad, depending on the concentration range of the fine dust rather than the concentration value. In this paper, we study and implement to predict the PM10 level by applying the Artificial neural network algorithm and the K-Nearest Neighbor algorithm, which are machine learning algorithms, using the actual weather and air quality data.

Lane Departure Detection Using a Partial Top-view Image (부분 top-view 영상을 이용한 차선 이탈 검출)

  • Park, Han-dong;Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1553-1559
    • /
    • 2017
  • This paper proposes a lane departure detection algorithm using a single camera equipped in front of a vehicle. The proposed algorithm generates a partial top-view image for a small ROI (region of interest) designated on the top-view space form the image acquired by the camera, detects lanes on the small partial top-view image, and makes a decision on the lane departure by checking overlap between the pre-assigned virtual vehicle and the detected lanes. The proposed algorithm also includes the removal of lines occurred by road symbols (noises) disturbing the lane departure detection between lanes and the prediction of lost lanes using lane information of previous fames. In lane departure detection test using real road videos, the proposed algorithm makes the right decision of 99.0% in lane keeping conditions and 94.7% in lane departure conditions.

A Comparison of Correction Models for the Prediction of Tropospheric Propagation Delay of GPS Signals (GPS 신호의 대류층 지연 예측을 위한 보정모델의 비교)

  • 이용창
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.283-291
    • /
    • 2002
  • Since GPS's SA cancellation, the interest is converged in correction of errors such as atmospheric delay and multipath that weight had been small relatively, which can improve the accuracy of positioning through modelling research. The aim of this study have an extensive comparison of the various tropospheric delay models (Goad&Goodman, A&K, Hopfield and Sasstamoinen) and mapping functions(Niell, Chao, and Marini). Expecially, the tropospheric delay amounts by change of the GPS satellite elevations, and the delay by various combination between zenith delay models and mapping functions, compared and examined. For this, programmed the total delay models and the combined models which can be described as a product of the delay at the zenith and a mapping function. The result of study, especially, as the minimum elevation of included data is reduced under $10^{\circ}$, it was considered to be reasonable that the prediction of tropospheric delay considering combination and mapping character of functions about the transition of the zenith delay to a delay with arbitrary zenith angle.

A Warning and Forecasting System for Storm Surge in Masan Bay (마산만 국지해일 예경보 모의 시스템 구축)

  • Han, Sung-Dae;Lee, Jung-Lyul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.131-138
    • /
    • 2009
  • In this paper, a dynamic warning system to forecast inland flooding associated with typhoons and storms is described. The system is used operationally during the typhoon season to anticipate the potential impact such as inland flooding on the coastal zone of interest. The system has been developed for the use of the public and emergency management officials. Simple typhoon models for quick prediction of wind fields are implemented in a user-friendly way by using a Graphical User Interface (GUI) of MATLAB. The main program for simulating tides, depth-averaged tidal currents, wind-driven surges and currents was also vectorized for the fast performance by MATLAB. By pushing buttons and clicking the typhoon paths, the user is able to obtain real-time water level fluctuation of specific points and the flooding zone. This system would guide local officials to make systematic use of threat information possible. However, the model results are sensitive to typhoon path, and it is yet difficult to provide accurate information to local emergency managers.

Soft sensor design based on PLS with hybrid inner model (내적 조합 모델 PLS를 이용한 소프트 센서 설계)

  • Hong Sun Ju;Han Chong Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.49-53
    • /
    • 1998
  • It takes quite a long time for an analyzer, such as gas chromatography, to measure a bulk property of a system, which prevents on-line measurements. Also, the cost of installation and maintenance is very high. Consequently, some other means is needed for on-line measurements of properties and the development of soft sensors based on process variables like temperature and pressure is of great interest. In the field of gas industry, the development of a soft sensor which makes indirect on-line measurements of gas compositions and flow rate, is in progress. In this paper, we proposed a hybrid inner model PLS which improved the prediction performance by taking into account the data structure, as an empirical modeling algorithm. When applied to a design of a soft sensor of a distillation tower, the hybrid inner model PLS showed better prediction performance than other methods.

  • PDF

An Inquiry into Prediction of Learner's Academic Performance through Learner Characteristics and Recommended Items with AI Tutors in Adaptive Learning (적응형 온라인 학습환경에서 학습자 특성 및 AI튜터 추천문항 학습활동의 학업성취도 예측력 탐색)

  • Choi, Minseon;Chung, Jaesam
    • Journal of Information Technology Services
    • /
    • v.20 no.4
    • /
    • pp.129-140
    • /
    • 2021
  • Recently, interest in AI tutors is rising as a way to bridge the educational gap in school settings. However, research confirming the effectiveness of AI tutors is lacking. The purpose of this study is to explore how effective learner characteristics and recommended item learning activities are in predicting learner's academic performance in an adaptive online learning environment. This study proposed the hypothesis that learner characteristics (prior knowledge, midterm evaluation) and recommended item learning activities (learning time, correct answer check, incorrect answer correction, satisfaction, correct answer rate) predict academic achievement. In order to verify the hypothesis, the data of 362 learners were analyzed by collecting data from the learning management system (LMS) from the perspective of learning analytics. For data analysis, regression analysis was performed using the regsubset function provided by the leaps package of the R program. The results of analyses showed that prior knowledge, midterm evaluation, correct answer confirmation, incorrect answer correction, and satisfaction had a positive effect on academic performance, but learning time had a negative effect on academic performance. On the other hand, the percentage of correct answers did not have a significant effect on academic performance. The results of this study suggest that recommended item learning activities, which mean behavioral indicators of interaction with AI tutors, are important in the learning process stage to increase academic performance in an adaptive online learning environment.