• Title/Summary/Keyword: Interconnection ribbon

Search Result 7, Processing Time 0.028 seconds

A Study on The Electrical Characteristics in Ribbon by Temperature Changes (온도 변화에 따른 Ribbon의 전기적 특성에 관한 연구)

  • Woo, Sung-Cheol;Jung, Tae-Hee;Kim, Tae-Bum;Kang, Ki-Hwan;Ahn, Hyeung-Ken;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.67-67
    • /
    • 2010
  • PV module has many power loss factor in the site. Among them, one thing is series resistance. Especially interconnection ribbon resistance is one of the power loss. In this paper, we study interconnection ribbon resistance of the PV module material. In the field, high temperature can pile ribbon resistance on the PV modules. We can do better choice in the optimum use of ribbon through checking relation of ribbon dimension and resistivity. From this point of view, different solder type and dimension was treated.

  • PDF

The Analysis of electrical loss characteristics by interconnection during PV module fabrication process (PV모듈 제조공정에서 Interconnection에 따른 전기적 손실 특성 분석)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.216-217
    • /
    • 2007
  • In this study, we analyzed the electrical loss characteristics between ribbon and output terminal of constituent material according to electrical resistance during interconnection process of PV module. From this result, the electrical output power reduction rate caused by interaction between ribbon and cell's interconnection was 2.88%. There was 1W electrical output power reduction through the 16 solar cells. So it is expected that the wider size of PV module gives the higher loss in electricity production. Also, the average output power of PV module passed lamination process was increased by 0.081W per one solar cell and the increase rate was 3.7%.PV module's electrical loss before and after lamination process according to constituent material's terminal was 0.49W and 0.50W, respectively.

  • PDF

Reduction of the bondwire parasitic effect using dielectric materials for microwave device packaging (초고주파 소자 실장을 위한 유전체를 이용하는 본딩와이어 기생 효과 감소 방법)

  • 김성진;윤상기;이해영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.1-9
    • /
    • 1997
  • For the reduction of parasitic inductance and matching of bonding wire in the package of microwave devices, we propose multiple bonding wires buried in a dielectric material of FR-4 composite. This structure is analyzed using the method of moments (MoM) and compared with the common bondwires and ribbon interconnections. The FR-4 composite is modelled by the cole-cole model which can consider the loss and the variation of the permittivity in a frequency. At 20 GHz, the parasitic reactance is reduced by 90%, 80%, 60% compared to those of a single bonding wire in air, double bonding wires in air and ribbon interconnection in air, respectively. Also, the new bondwire shows very good matching of 60.ohm characteristic impedance and has 15dB, 10dB, 5dB improvement of the return loss and 2.5dB, 0.7dB, 0.2dB improvement of the insertion loss compared to the common interconnections. This technique can minimize the parasitic effect of bondwires in microwave device packaging.

  • PDF

The comparison of maximum output power of PV module by solar cell breakage (PV 모듈에서 셀의 파손에 따른 전기적 출력 특성 비교)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.9-10
    • /
    • 2007
  • In this paper, we investigated the effect of solar cell breakage on maximum output power of PV module. The test result using artificial light source didn't give any change in output power in case of crack near electrical ribbon. Also, there was a reduction in output power in case of increasing of crack area far from electrical ribbon. But, this experiment is under artificial light source test method. So, when such a PV module is outdoor for a long time, there would be problems on electrical output power and durability because of thermal aging phenomenon of solar cell breakage.

  • PDF

Wideband Characterization of Double Bondwires Ribbon for Millimeter-Wave Packaging (밀리미터파 대역 패키징을 위한 이중 본드와이어와 리본의 광대역 특성)

  • Kim, Jin-Yang;Chang, Dong-Pil;Yom, In-Bok;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.7
    • /
    • pp.7-13
    • /
    • 2001
  • The wirebonding is a common interconnection technique for modern microwave devices because of rather simple and reliable processes involved. At millimeter-wave frequencies, however, the bondwire parasitics are significant and consequently limit the external performance of packaged devices. In this paper, we represent wideband characterization of multiple bondwires and ribbon in a frequency range from 20 to 35 GHz. From these results, the double bondwire shows very small insertion loss less than 0.55 dB up to 35 GHz and its performance is comparable to that of the ribbon in the millimeter-wave frequencies. Therefore, the wirebonding is very suitable for millimeter wave packaging in terms of performance and manufacturing cost.

  • PDF

The Research on Performance of PCB type of Solar cell BusBar Formed by Layer Structure (적층구조로 형성된 PCB형 태양전지용 BusBar의 성능에 관한 연구)

  • Jeon, Taeg-Jong;Cho, Nam-Cheol;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.102-107
    • /
    • 2012
  • The purpose of thesis is to improve output of solar cell module by enhancing transmission efficiency. To improve transmission efficiency, transmission interconnection ribbon which is used to connect solar cells and busbar which contacts with it has been improved. To secure reliability, comparison research on output of solar cell modules has been conducted by manufacturing PCB module formed by laminated metal with the same output. The result of this research is based on a output efficiency test of modules by comparing electric conductivity of soldering busbar and laminated PCV type of busbar.

  • PDF

A Study on the Optimization of CP Based Low-temperature Tabbing Process for Fabrication of Thin c-Si Solar Cell Module (박형 태양전지모듈 제작을 위한 저온 CP 공정 최적화에 관한 연구)

  • Jin, Ga-Eon;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Song, Hee-eun;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Thin crystalline silicon (C-Si) solar cell is expected to be a low price energy source by decreasing the consumption of Si. However, thin c-Si solar cell entails the bowing and crack issues in high temperature manufacturing process. Thus, the conventional tabbing process, based on high temperature soldering (> $250^{\circ}C$), has difficulties for applying to thin c-Si solar cell modules. In this paper, a conductive paste (CP) based interconnection process has been proposed to fabricate thin c-Si solar cell modules with high production yield, instead of existing soldering materials. To optimize the process condition for CP based interconnection, we compared the performance and stability of modules fabricated under various lamination temperature (120, 150, and $175^{\circ}C$). The power from CP based module is similar to that with conventional tabbing process, as modules are fabricated. However, the output of CP based module laminated at $120^{\circ}C$ decreases significantly (14.1% for Damp heat and 6.1% for thermal cycle) in harsh condition, while the output drops only in 3% in the samples process at $150^{\circ}C$, $175^{\circ}C$. The peel test indicates that the unstable performance of sample laminated at $120^{\circ}C$ is attributed to weak adhesion strength (1.7 N) between cell and ribbon compared to other cases (2.7 N). As a result, optimized lamination temperature for CP based module process is $150^{\circ}C$, considering stability and energy consumption during the fabrication.