• Title/Summary/Keyword: Intercalation/de-intercalation

Search Result 21, Processing Time 0.031 seconds

Electrochemical Lithium Intercalation within Graphite from Ionic Liquids containing BDMI+ Cation (BDMI+ 양이온을 함유한 이온성 액체로부터 흑연으로의 전기화학적 리튬 삽입)

  • Lee, You-Shin;Jeong, Soon-Ki;Lee, Heon-Young;Kim, Chi-Su
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • In situ electrochemical atomic force microscopy (ECAFM) observations of the surface of highly oriented pyrolytic graphite (HOPG) was performed before and after cyclic voltammetry in lithium bis(fluorosulfonyl)imide (LiTFSI) dissolved in 1-buthyl-2,3-dimethylimidazolium (BDMI)-TFSI to understand the interfacial reactions between graphite and BDMI-based ionic liquids. The formation of blisters and the exfoliation of graphene layers by the intercalation of $BDMI^+$ cations within HOPG were observed instead of reversible lithium intercalation and de-intercalation. On the other hand, lithium ions are reversibly intercalated into the HOPG and de-intercalatied from the HOPG without intercalation of the $BDMI^+$ cations in the presence of 15 wt% of 4.90 mol/$kg^{-1}$ LiTFSI dissolved in propylene carbonate (PC). ECAFM results revealed that the concentrated PC-based solution is a very effective additive for preventing $BDMI^+$ intercalation through the formation of solid electrolyte interface (SEI).

In Situ X-ray Absorption Spectroscopic Study for α-MoO3 Electrode upon Discharge/Charge Reaction in Lithium Secondary Batteries

  • Kang, Joo-Hee;Paek, Seung-Min;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3675-3678
    • /
    • 2010
  • In-situ X-ray absorption spectroscopy (XAS) was used to elucidate the structural variation of $\alpha-MoO_3$ electrode upon discharge/charge reaction in a lithium ion battery. According to the XAS analysis, hexavalent Mo atoms in $\alpha-MoO_3$ framework are reduced as the amount of intercalated lithium ions increases. As lithium de-intercalation proceeds, most of pre-edge peaks are restored again. However, according to the Fourier transforms of the extended X-ray absorption fine structure (EXAFS) spectra, lithium de-intercalation reaction is partially irreversible upon the charge reaction, which is one of the main reasons why the capacity of $\alpha-MoO_3$ electrode decreases upon successive discharge/charge cycles.

Effect of Counter Anions on Solid Electrolyte Interphase Formation on Graphite Electrodes in Propylene Carbonate-based Electrolyte Solutions

  • Song, Hee-Youb;Kim, Seong In;Nogales, Paul Maldonado;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Herein, the effect of counter anions on the formation of a solid electrolyte interphase (SEI) in a propylene carbonate (PC)-based electrolyte solution was investigated. Although the reversible capacities were different, reversible intercalation and de-intercalation of lithium ions occurred in the graphite negative electrode in the PC-based electrolyte solutions containing 1 M $LiClO_4$, $LiPF_6$, $LiBF_4$, and $LiCF_3SO_3$ at low temperature ($-15^{\circ}C$). This indicated that the surface films acted as an effective SEI to suppress further co-intercalation and decomposition reactions at low temperature. However, the SEIs formed at the low temperature were unstable in 1 M $LiPF_6$ and $LiBF_4/PC$ at room temperature ($25^{\circ}C$). On the other hand, increasing reversible capacity was confirmed in the case of $LiCF_3SO_3/PC$ at room temperature, because the SEI formed at the low temperature was still maintained. These results suggest that counter anions are an important factor to consider for the formation of effective SEIs in PC-based electrolyte solutions.

Electrochemical Lithium Insertion/Extraction for Carbonaceous Thin Film Electrodes in Propylene Carbonate Solution

  • Fukutsuka, Tomokazu;Abe, Takeshi;Inaba, Minoru;Ogumi, Zempachi;Matsuo, Yoshiaki;Sugie, Yosohiro
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.129-132
    • /
    • 2001
  • Carbonaceous thin films were prepared from acetylene and argon gases by plasma assisted chemical vapor deposition (Plasma CVD) at 873 K. The carbonaceous thin films were characterized by mainly Raman spectroscopy, and their electrochemical properties were studied by cyclic voltammetry and charge-discharge measurements in propylene carbonate (PC) solution. Raman spectra showed that crystallinity of carbonaceous thin films is correlated by the applied RF power. The difference of the applied RF power also affected on the results of cyclic voltammetry and charge-discharge measurements. In PC solution, intercalation and de-intercalation of lithium ion can occur as well as in the mixed solution of EC and DEC.

  • PDF

Molecular Dynamics Simulation of Intercalation of Benzopyrene Motif in DNA (핵산의 분자역학적 모의실험을 통한 벤조피렌 층상구조의 발현)

  • Park, Kyung-Lae;Santos, Carlos De Los
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • Benzopyrene is known to be one of the most powerful carcinogens which can build intercalated motif between base pairs in damaged DNA. The dimension of benzopyrene itself is much bigger than any of the DNA bases and thus the question whether the lesion of some base pair by insertion of benzopyrene can happen with or without a dramatic distortion of the helical structure is a highly interesting theme. In this work we used a molecular mechanics simulation using AMBER program package to go into the conformational characteristics. The condition of the insertion process of the benzopyrene motif from minor groove of the starting structure between the base pairs in the internal area of double helix was investigated using the molecular dynamics simulation at elevated temperature.

Chemical and Electrochemical Intercalation of Lithium in 2D-FeMoO$_4Cl^1$

  • Choy Jin-Ho;Chang Soon-Ho;Noh Dong-Youn;Son Kyoung-A
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.27-30
    • /
    • 1989
  • Lithium has been intercalated into $FeMoO_4Cl$, and deintercalated from $LixFeMoO_4Cl$ both electrochemically and chemically. The inserted $Li^+$ ions are stabilized in the distorted octahedral field in interlayer space of $FeMoO_4Cl$. The crystal symmetry is reduced from tetragonal to monoclinic due to the reduction of ferric to ferrous ions in $LixFeMoO_4Cl$ upon lithium intercalation. From the magnetic and structural data, it has been concluded that the high-spin electronic configuration of $Fe^{2+}(d_{xz}^2{d_{y2}^1}{d_1}{2d_z^12}{\cdot}_y2)$, corresponding to $^5E_g$, group term in $D_{4h}$ symmetry, can be stabilized by the elongation of $FeO_4Cl_{2-}$octahedra in a weak ligand field.

Charge-discharge Behaviour of Lithium Ion Secondary Battery Using LiCo$O_2$ Synthesized by a Solution Phase Reaction (액상 반응에 의해 합성한 리튬코발트산화물을 이용한 Lithium ion 2차전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수;심윤보
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1049-1054
    • /
    • 1998
  • The LiCo$O_2$ powder was synthesized by a solution phase reaction. This shows a high (003) peak intensity and low (104) or (101) peak intensities in X-ray diffraction spectra. The LiCo$O_2$/Li cell shows an initial discharge capacity of 102.9mAh/g and an average discharge potential or 3.877V at a current density of 50mA/g between 3.0~4.2V. The peaks of dQ/dV plot are associated with Li ion intercalation/deintercalation reaction. To evaluate the cycleability of an actual battery system, cylindrical lithium ion cell was manufactured using graphitized MPCF anode and LiCoO$_2$ cathode. After 100th cycle, this cel maintains 80% capacity of 10th cycle value. The LiCoO$_2$/MPCF cell has a high discharge voltage of 3.6~3.7V and a good cycle life performance on cycling between 4.2~2.7V.

  • PDF

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

Charge/Discharge Mechanism of Multicomponent Olivine Cathode for Lithium Rechargeable Batteries

  • Park, Young-Uk;Shakoor, R.A.;Park, Kyu-Young;Kang, Ki-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • Quasi-equilibrium profiles are analyzed through galvanostatic intermittent titration technique (GITT) and potentiostatic intermittent titration technique (PITT) to study the charge/discharge mechanism in multicomponent olivine structure ($LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$). From GITT data, the degree of polarization is evaluated for the three regions corresponding to the redox couples of $Mn^{2+}/Mn^{3+}$, $Fe^{2+}/Fe^{3+}$ and $Co^{2+}/Co^{3+}$. From PITT data, the current vs. time responses are examined in each titration step to find out the mode of lithium de-intercalation/intercalation process. Furthermore, lithium diffusivities at specific compositions (x in $Li_xMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$) are also calculated. Finally, total capacity ($Q^{total}$) and diffusional capacity ($Q^{diff}$) are obtained for some selected voltage steps. The entire study consistently confirms that the charge/discharge mechanism of multicomponent olivine cathode is associated with a one-phase reaction rather than a biphasic reaction.

A Novel Hybrid Supercapacitor Using a Graphite Cathode and a Niobium(V) Oxide Anode

  • Park, Gum-Jae;Kalpana, D.;Thapa, Arjun Kumar;Nakamura, Hiroyoshi;Lee, Yun-Sung;Yoshio, Masaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.817-820
    • /
    • 2009
  • To meet the high current load requirement from the high energy density realized by metal oxide and high power density graphite, we propose a novel hybrid supercapacitor consisting of Nb2O5 and KS6 graphite in 1.0 M LiPF6-EC:DEC (1:2). This new system exhibits a sloping voltage profile from 2.7 to 3.5 V during charging and presents a high operating voltage plateau between 1.5 and 3.5 V during discharging. The cell was tested at a current density of 100 mA/g with a cut-off voltage between 3.0 and 1.0 V. This novel energy storage system delivers the highest initial discharge capacity of 55 mAh/g and exhibits a good cycle performance.