Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.1.55

Effect of Counter Anions on Solid Electrolyte Interphase Formation on Graphite Electrodes in Propylene Carbonate-based Electrolyte Solutions  

Song, Hee-Youb (Department of Chemical Engineering, Soonchunhyang University)
Kim, Seong In (Energy Storage System R&D Center, Korea Automotive Technology Institute)
Nogales, Paul Maldonado (Department of Chemical Engineering, Soonchunhyang University)
Jeong, Soon-Ki (Department of Chemical Engineering, Soonchunhyang University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.1, 2019 , pp. 55-60 More about this Journal
Abstract
Herein, the effect of counter anions on the formation of a solid electrolyte interphase (SEI) in a propylene carbonate (PC)-based electrolyte solution was investigated. Although the reversible capacities were different, reversible intercalation and de-intercalation of lithium ions occurred in the graphite negative electrode in the PC-based electrolyte solutions containing 1 M $LiClO_4$, $LiPF_6$, $LiBF_4$, and $LiCF_3SO_3$ at low temperature ($-15^{\circ}C$). This indicated that the surface films acted as an effective SEI to suppress further co-intercalation and decomposition reactions at low temperature. However, the SEIs formed at the low temperature were unstable in 1 M $LiPF_6$ and $LiBF_4/PC$ at room temperature ($25^{\circ}C$). On the other hand, increasing reversible capacity was confirmed in the case of $LiCF_3SO_3/PC$ at room temperature, because the SEI formed at the low temperature was still maintained. These results suggest that counter anions are an important factor to consider for the formation of effective SEIs in PC-based electrolyte solutions.
Keywords
Graphite; SEI; Propylene carbonate; Anion; Lithium ion batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-K. Jeong, H.-Y. Song, S. I. Kim, T. Abe, W. S. Jeon, R.-Z Yin, and Y. S. Kim, Electrochem. Commun., 2013, 31(24), 24-27.   DOI
2 Y.-S. Kim, and S.-K. Jeong, J. Spectrosc., 2015, 2015.
3 Y. Yamada, M. Yaegashi, T. Abe, and A. Yamada, Chem. Commun., 2013, 49(95), 11194-11196.   DOI
4 P. Novak, F. Joho, R. Imhof, J.-C. Panitz, and O. Haas, J. Power Sources, 1999, 81, 212-216.   DOI
5 S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, J. Electrochem. Soc., 2001, 148(9), A989-A993.   DOI
6 W. A. Henderson, J. Phys. Chem. B, 2006, 110(26), 13177-13183.   DOI
7 E. Peled, J. Electrochem. Soc., 1979, 126(12), 2047-2051.   DOI
8 Z. Ogumi, and M. Inaba, Bull. Chem. Soc. Jpn., 1998, 71(3), 521-534.   DOI
9 S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, J. Electrochem. Soc., 2001, 148(9), A989-A993.   DOI
10 D. Aurbach, M. Koltypin, and H. Teller, Langmuir, 2002, 18(12), 9000-9009.   DOI
11 T. Ohzuku, Y. Iwakoshi, and K. Sawai, J. Electrochem. Soc., 1993, 140(9), 2490-2498.   DOI
12 M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, J. Electrochem. Soc., 1995, 142(1), 20-26.   DOI
13 D. Aurbach, and Y. Ein-Eli, J. Electrochem. Soc., 1995, 142(6), 1746-1752.   DOI
14 K. Xu, Chem. Rev., 2004, 104(10), 4303-4417.   DOI
15 S.S. Zhang, K. Xu, J.L. Allen, T.R. Jow, J. Power Sources, 2002, 110(1), 216-221.   DOI
16 G.-C. Chung, H.-J. Kim, S.-I. Yu, S.-H. Jun, J.-W. Choi, and M.-H. Kim, J. Electrochem. Soc., 2000, 147(12), 4391-4398.   DOI
17 M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, and Z. Ogumi, J. Power Sources, 1997, 68(2), 221-226.   DOI
18 J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 1995, 54(2), 228-231.   DOI
19 D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, Electrochim. Acta, 1999, 45(1-2), 67-86.   DOI
20 H.-Y. Song, and S.-K. Jeong, J. Power Sources, 2018, 373, 110-118.   DOI
21 S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, Electrochem. Solid-State Lett., 2003, 6(1), A13-A15.   DOI
22 S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, J. Power Sources, 2008, 175(1), 540-546.   DOI