• Title/Summary/Keyword: Interaction Matrix

Search Result 532, Processing Time 0.023 seconds

Spatial Speaker Localization for a Humanoid Robot Using TDOA-based Feature Matrix (도착시간지연 특성행렬을 이용한 휴머노이드 로봇의 공간 화자 위치측정)

  • Kim, Jin-Sung;Kim, Ui-Hyun;Kim, Do-Ik;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.237-244
    • /
    • 2008
  • Nowadays, research on human-robot interaction has been getting increasing attention. In the research field of human-robot interaction, speech signal processing in particular is the source of much interest. In this paper, we report a speaker localization system with six microphones for a humanoid robot called MAHRU from KIST and propose a time delay of arrival (TDOA)-based feature matrix with its algorithm based on the minimum sum of absolute errors (MSAE) for sound source localization. The TDOA-based feature matrix is defined as a simple database matrix calculated from pairs of microphones installed on a humanoid robot. The proposed method, using the TDOA-based feature matrix and its algorithm based on MSAE, effortlessly localizes a sound source without any requirement for calculating approximate nonlinear equations. To verify the solid performance of our speaker localization system for a humanoid robot, we present various experimental results for the speech sources at all directions within 5 m distance and the height divided into three parts.

  • PDF

Process Methology of Designing User Interface in Enterprise Portal (기업포탈사이트 업무화면 설계 프로세스 방법론 - 보험사의 프로젝트 진행 사례를 중심으로)

  • Kwon, Suk-Kyoung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.310-316
    • /
    • 2008
  • This theory focuses on the Enterprise Portal and researches and analyzes the user requirement on as-is system. The UI Checklist Matrix is made based on the result of user analysis and evaluation of checklist. The horizontal axis of the Matrix is composed of 6 results(Layout, Navigation, Information, Function, Visibility and Interaction) of user requirement analysis. The vertical axis of the Matrix is composed of 10 subjects, Learnability, Efficiency, Accuracy, Accessibility, Consistency, Agility, Convergence, Personalization, Technology, and Standardization. At the point of vertical and horizontal items meet, indicates the graded of importance and defines a details item. The Guideline in which Matrix is reflected is set and according to the guideline, designing the business screen and assessing the Matrix.

  • PDF

Multilevel approach for the local nanobuckling analysis of CNT-based composites

  • Silvestre, N.;Faria, B.;Duarte, A.
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.269-283
    • /
    • 2012
  • In the present paper, a multilevel approach for the local nanobuckling analysis of carbon nanotube (CNT) based composite materials is proposed and described. The approach comprises four levels, all of them at nanoscale. The first level aims to propose the potential that describes the interatomic forces between carbon atoms. In the second level, molecular dynamics simulations are performed to extract the elastic properties of the CNT. The third level aims to determine the stiffness of the material that surrounds the CNT (matrix), using the annular membrane analysis. In the fourth level, finite strip analysis of the CNT elastically restrained by the matrix is performed to calculate the critical strain at which the CNT buckles locally. In order to achieve accurate results and take the CNT-matrix interaction into account, the $3^{rd}$ and $4^{th}$ steps may be repeated iteratively until convergence is achieved. The proposed multilevel approach is applied to several CNTs embedded in a cylindrical representative volume element and illustrated in detail. It shows that (i) the interaction between the CNT and the matrix should be taken into account and (ii) the buckling at nanoscale is sensitive to several types of local buckling modes.

Protein-Protein Interaction Prediction using Interaction Significance Matrix (상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측)

  • Jang, Woo-Hyuk;Jung, Suk-Hoon;Jung, Hwie-Sung;Hyun, Bo-Ra;Han, Dong-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.851-860
    • /
    • 2009
  • Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.

Effects of the Interaction between Intercalant and Matrix Polymer in Preparation of Clay-dispersed Nanocomposite

  • Ko, Moon-Bae;Kim, Jyunkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.120-124
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of two components, styrenic polymers with different content of functional groups and two different organophilic clays (Cloisite(R) 25A and Cloisite(R)30A) with a twin screw extruder. Dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffraction method and a transmission electron microscope. It was found that if the interaction force between intercalant and matrix polymer is attractive, the matrix polymer intercalates more rapidly into the gallery of silicate layers. The faster intercalation of matrix polymer leads to the better dispersibility of silicate layers in the matrix polymer.

  • PDF

Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements (명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석)

  • 윤정방;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF

Modification of Hydroxyapatite-gelatin Nanocomposite using Side Group Reaction of Ca2+-RCOO-

  • Chang, Myung-Chul;Yang, Hae-Kwon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.72-77
    • /
    • 2012
  • In the preparation of a hydroxyapatite [HAp]/gelatin [GEL] nanocomposite, the GEL matrix in aqueous solution of $H_3PO_4$ was modified by the introduction of aspartic acid [Asp], asparagine [Asn], and glycine [Gly]. The addition of Asp, Asn and Gly greatly affected the slurry formation of HAp/GEL nanocomposite and the resulting dry body showed variations in toughness with the addition of the different amino acids. The introduction of Asn into HAp/GEL nanocomposite was effective for producing the organic-inorganic interaction between HAp and GEL, and caused the increase of toughness. The formation reaction of the modified HAP/GEL nanocomposites was investigated by using XRD and FT-IR. The organic-organic interaction between the GEL matrix and the additives of Asp, Asn and Gly was confirmed from FT-IR analysis, and the organic-inorganic interaction between HAp nanocrystallites and the modified GEL matrix was also discussed, using FT-IR spectra patterns. Nanocrystallites of HAp were covalently bound with the GEL macromolecules and differently influenced by the modification species of Asp, Asn, and Gly.

A Functional Matrix Approach to Pedagogical Enrichment of the Dispositional Core of Future Specialists' Experience of Social Interaction

  • Kovalenko, E.V.;Gubarenko, I.V.;Kovalenko, V.I.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.255-259
    • /
    • 2022
  • The new social reality emerging amid the global rise of communication links and integration processes acutely emphasizes the problems of communication in large and small social systems. The method of their communication becomes one of the keys to ensuring global security. It has become the mission of humanitarian education to prepare the younger generations for life in a changing world with no image of the future and increasing uncertainty. In psychological and pedagogical research, there is a growing scientific interest in the problems of interaction of the individual with the social environment. The mental trace of a person's practice in society shapes the experience of social interaction, which constitutes simultaneously the source, tool, and condition for the emergence and development of personality. The study outlines the methodological foundations for the study of individual experiences of social interaction. A hypothesis about the productivity of the functional matrix method is tested. Materials for the training of specialists in the humanities include interdisciplinary approaches to the study and transformation of the experience of social interaction and systematic methodology for the study of complex objects. Fundamental to the study is the systematic-dialectical method, and the matrix method is employed as the instrumental-technological method. The paper presents the results of a multidisciplinary overview of scientific literature concerning the essential characteristics and functions of social interaction and the respective experience. The overview points to the fragmented nature of scientific understanding of the elements of experience outside its integrity and systemic properties. Based on the formula "personality interacts with the social environment", the study presents an algorithm for the application of a systematic methodology for the study of complex objects, which made it possible to identify the system parameters of experience at three levels of cognition and develop the reference structural and functional matrices for the didactic system of its pedagogical enrichment.

Representative Volume Element Analysis of Fluid-Structure Interaction Effect on Graphite Powder Based Active Material for Lithium-Ion Batteries

  • Yun, Jin Chul;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • In this study, a finite element analysis approach is proposed to predict the fluid-structure interaction behavior of active materials for lithium-ion batteries (LIBs), which are mainly composed of graphite powder. The porous matrix of graphite powder saturated with fluid electrolyte is considered a representative volume element (RVE) model. Three different RVE models are proposed to consider the uncertainty of the powder shape and the porosity. P-wave modulus from RVE solutions are analyzed based on the microstructure and the interaction between the fluid and the graphite powder matrix. From the results, it is found that the large surface area of the active material results in low mechanical properties of LIB, which leads to poor structural durability when subjected to dynamic loads. The results obtained in this study provide useful information for predicting the mechanical safety of a battery pack.

State feedback optimal control of large-scale discrete-time systems with time-delays (시간지연이 있는 대규모 이산시간 시스템의 상태궤환 최적제어)

  • 김경연;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.219-224
    • /
    • 1988
  • A decentralised computational procedure is proposed for the optimal feedback gain matrix of large-scale discrete-time systems with time-delays. The constant feedback gain matrix is computed from the optimal state and input trajectries obtained hierarchically by the interaction prediction method. All the calculation in this approach are done off-line. The resulting gains are optimal for all the initial conditions. The interaction prediction method is applied to time-delay large-scale systems with general structures by extending the dimensions of coupling matices. A numerical exampie illustrates the algorithm.

  • PDF