• Title/Summary/Keyword: Interaction Architecture

Search Result 806, Processing Time 0.023 seconds

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

Prediction of Human Performance Time to Find Objects on Multi-display Monitors using ACT-R Cognitive Architecture

  • Oh, Hyungseok;Myung, Rohae;Kim, Sang-Hyeob;Jang, Eun-Hye;Park, Byoung-Jun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.159-165
    • /
    • 2013
  • Objective: The aim of this study was to predict human performance time in finding objects on multi-display monitors using ACT-R cognitive architecture. Background: Display monitors are one of the representative interfaces for interaction between people and the system. Nowadays, the use of multi-display monitors is increasing so that it is necessary to research about the interaction between users and the system on multi-display monitors. Method: A cognitive model using ACT-R cognitive architecture was developed for the model-based evaluation on multi-display monitors. To develop the cognitive model, first, an experiment was performed to extract the latency about the where system of ACT-R. Then, a menu selection experiment was performed to develop a human performance model to find objects on multi-display monitors. The validation of the cognitive model was also carried out between the developed ACT-R model and empirical data. Results: As a result, no significant difference on performance time was found between the model and empirical data. Conclusion: The ACT-R cognitive architecture could be extended to model human behavior in the search of objects on multi-display monitors.. Application: This model can help predicting performance time for the model-based usability evaluation in the area of multi-display work environments.

Verification of Underwater Blasting Response Analysis of Air Gun Using FSI Analysis Technique (FSI 해석기법을 이용한 에어건 수중발파 응답해석 검증)

  • Lee, Sang-Gab;Lee, Jae-Seok;Park, Ji-Hoon;Jung, Tae-Young;Lee, Hwan-Soo;Park, Kyung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.522-529
    • /
    • 2017
  • Air gun shock system is used as an alternative energy source as part of the attempt to overcome the restrictions of economical expense and environmental damage, etc., due to the use of explosives for the UNDerwater EXplosion (UNDEX) shock test. The objectivity of this study is to develop the simulation technique of air gun shock test for the design of model-scale one for the near field non-explosive UNDEX test through its verification with full-scale SERCEL shock test result. Underwater blasting response analysis of full-scale air gun shock test was carried out using highly advanced M&S (Modeling & Simulation) system of FSI (Fluid-Structure Interaction) analysis technique of LS-DYNA code, and was verified by comparing its shock characteristics and behaviors with the results of air gun shock test.

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

Preconditioning technique for a simultaneous solution to wind-membrane interaction

  • Sun, Fang-jin;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.349-368
    • /
    • 2016
  • A preconditioning technique is presented for a simultaneous solution to wind-membrane interaction. In the simultaneous equations, a linear elastic model was employed to deal with the fluid-structure data transfer at the interface. A Lagrange multiplier was introduced to impose the specified boundary conditions at the interface and strongly coupled simultaneous equations are derived after space and time discretization. An initial linear elastic model preconditioner and modified one were derived by treating the linearized elastic model equation as a saddle point problem, respectively. Accordingly, initial and modified fluid-structure interaction (FSI) preconditioner for the simultaneous equations were derived based on the initial and modified linear elastic model preconditioners, respectively. Wind-membrane interaction analysis by the proposed preconditioners, for two and three dimensional membranous structures respectively, was performed. Comparison was made between the performance of initial and modified preconditioners by comparing parameters such as iteration numbers, relative residuals and convergence in FSI computation. The results show that the proposed preconditioning technique greatly improves calculation accuracy and efficiency. The priority of the modified FSI preconditioner is verified. The proposed preconditioning technique provides an efficient solution procedure and paves the way for practical application of simultaneous solution for wind-structure interaction computation.

Finite element analysis of vehicle-bridge interaction by an iterative method

  • Jo, Ji-Seong;Jung, Hyung-Jo;Kim, Hongjin
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.165-176
    • /
    • 2008
  • In this paper, a new iterative method for solving vehicle-bridge interaction problems is proposed. Iterative methods have advantages over the non-iterative methods in that it is not necessary to update the system matrix for a given wheel location, and the method can be applied for a new type of car or bridge with few or no modifications. In the proposed method, the necessity of system matrices update is eliminated using the equivalent interaction force acting on the bridge, which is obtained iteratively. Ballast stiffness is included in the interaction forces and the geometric compatibility at the contact points are used as convergence criteria. The bridge is considered as an elastic Bernoulli-Euler beam with surface irregularity and ballast stiffness. The moving vehicle is modeled as a multi-axle mass-spring-damper system having many degrees of freedom depending on the number of axles. The pitching effect, which is the interaction effect between the rear and front wheels when a vehicle begins to enter or leave the bridge, is also considered in the formulation including extended ground boundaries having surface irregularity and ballast stiffness. The applicability of the proposed method is illustrated in the numerical studies.

Numerical investigation of the unsteady flow of a hybrid CRP pod propulsion system at behind-hull condition

  • Zhang, Yuxin;Cheng, Xuankai;Feng, Liang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.918-927
    • /
    • 2020
  • Flows induced by hybrid CRP pod propulsion systems (CRP-POD) are fundamentally characterized by unsteadiness. This work presents a numerical study on the unsteady flow of a CRP-POD at behind-hull condition based on CFD (Computational Fluid Dynamics). Unsteady RANS method is adopted, coupled with SST k-u turbulence model and sliding mesh method. The propeller thrusts and torques obtained by CFD is validated by model tests and acceptable agreements are obtained. The time histories of shingle-blade loads and pressures near the hull surface are recorded for the analysis of unsteady flow features. The cases of forward propeller alone and aft propeller alone are also computed to distinguish the hull-propeller interaction and propeller-propeller interaction. The results show the blade loads of both forward and aft propellers strongly fluctuate with phase angles. For the forward propeller, the blade load fluctuation is mainly governed by the hull-propeller interaction, while the aft blade load is remarkably affected by the propeller-propeller interaction in terms of the load average and fluctuation pattern. The fields of pressure, vorticity and velocity are also analyzed to reveal the unsteady flow features.

A Paraconsistent Multi-Agent System

  • Jose Pacheco Almeida Prado;Freitas, Ricardo-Luis
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.93.5-93
    • /
    • 2002
  • Distributed Artificial Intelligence (DAI) aims to study and develop techniques that allow interaction among intelligent entities. In the last two decades, some types of DAI architecture have been proposed for various fields. However, it can be noticed that the inconsistency phenomenon has not been dealt with properly. This is probably due to the fact that this phenomenon cannot be handled (at least directly) with classical logic. Hence, to deal with such inconsistencies directly, one should employ a logic other than the classical one. The DAI Architecture described in this work is based on a nonclassical logic called Annotated Paraconsistent Logic.

  • PDF

Meshfree/GFEM in hardware-efficiency prospective

  • Tian, Rong
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.197-210
    • /
    • 2013
  • A fundamental trend of processor architecture evolving towards exaflops is fast increasing floating point performance (so-called "free" flops) accompanied by much slowly increasing memory and network bandwidth. In order to fully enjoy the "free" flops, a numerical algorithm of PDEs should request more flops per byte or increase arithmetic intensity. A meshfree/GFEM approximation can be the class of the algorithm. It is shown in a GFEM without extra dof that the kind of approximation takes advantages of the high performance of manycore GPUs by a high accuracy of approximation; the "expensive" method is found to be reversely hardware-efficient on the emerging architecture of manycore.