Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.2.197

Meshfree/GFEM in hardware-efficiency prospective  

Tian, Rong (Institute of Computing Technology, Chinese Academy of Sciences)
Publication Information
Interaction and multiscale mechanics / v.6, no.2, 2013 , pp. 197-210 More about this Journal
Abstract
A fundamental trend of processor architecture evolving towards exaflops is fast increasing floating point performance (so-called "free" flops) accompanied by much slowly increasing memory and network bandwidth. In order to fully enjoy the "free" flops, a numerical algorithm of PDEs should request more flops per byte or increase arithmetic intensity. A meshfree/GFEM approximation can be the class of the algorithm. It is shown in a GFEM without extra dof that the kind of approximation takes advantages of the high performance of manycore GPUs by a high accuracy of approximation; the "expensive" method is found to be reversely hardware-efficient on the emerging architecture of manycore.
Keywords
meshfree; GFEM; manycore; co-design; exascale computing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Strouboulis, T., Zhang, L., Wang, D. and Babuska, I. (2006), "A posteriori error estimation for generalized finite element methods", Comput. Meth. Appl. Mech. Eng., 195, 852-879.   DOI   ScienceOn
2 Strouboulis, T., Babuska, I. and Hidajat, R. (2006), "The generalized finite element method for Helmholtz equation: theory, computation and open problems", Comput. Meth. Appl. Mech. Eng., 195, 4711-4731.   DOI   ScienceOn
3 Strouboulis, T., Hidajat, R. and Babuska, I. (2008), "The generalized finite element method for Helmholtz equation, part II: effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment", Comput. Meth. Appl. Mech. Eng., 197, 364-380.   DOI   ScienceOn
4 Tian, R. (2012), "Co-design thinking towards exascale computing", Inform. Tech. Letter, 10(3), 50-63. (in Chinese)
5 Tian, R. and Sun, N. (2013), "Some considerations about exascale computing in China", Commun. China Comput. Feder., 9(2), 52-60. (in Chinese)
6 Tian, R. (2013), "Extra-dof-free and linearly independent enrichments in GFEM", Comput. Meth. Appl. Mech. Eng., to appear.
7 http://www.top500.org/project/linpack/
8 http://nvworld.ru/files/articles/calculations-on-gpu-advantages-fermi/fermipeformance.pdf
9 http://code.google.com/p/cusp-library/
10 Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158.   DOI   ScienceOn
11 Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314.   DOI   ScienceOn
12 Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Meth. Appl.Mech. Eng., 153(1-2), 117-126.   DOI   ScienceOn
13 O'Hara, P., Duarte, C.A. and Eason, T. (2009), "Generalized finite element analysis for three dimensional problems exhibiting sharp thermal gradients", Comput. Meth. Appl. Mech. Eng., 198, 1857-1871.   DOI   ScienceOn
14 Simone, A., Duarte C.A. and Van der Giessen E. (2006), "A generalized finite element method for polycrystals with discontinuous grain boundaries", Int. J. Numer. Meth. Eng., 67, 1122-1145.   DOI   ScienceOn
15 Strouboulis, T., Babuska, I. and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 181(1-3), 43-69.   DOI   ScienceOn
16 Strouboulis, T., Copps, K. and Babuska, I. (2000), "The generalized finite element method: an example of its implementation and illustration of its performance", Int. J. Numer. Meth. Eng., 47, 1401-1417.   DOI
17 Strouboulis, T., Copps, K. and Babuska, I. (2001), "The generalized finite element method", Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193.   DOI   ScienceOn
18 Strouboulis, T., Zhang, L. and Babuska, I. (2003), "Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids", Comput. Meth. Appl. Mech. Eng., 192, 3109-3161.   DOI   ScienceOn
19 Babuska, I. and Melenk, J.M. (1997), "Partition of unity method", Int. J. Numer. Meth. Eng., 40, 727-758.   DOI   ScienceOn
20 Strouboulis, T., Zhang, L. and Babuska, I. (2004), "p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems", Int. J. Numer. Meth. Eng., 60, 1639-1672.   DOI   ScienceOn
21 Babuska, I., Caloz, G. and Osborn, J.E. (1994), "Special finite element methods for a class of second order elliptic problems with rough coefficients", SIAM J Numer. Anal., 31, 945-981.   DOI   ScienceOn
22 Cecka, C., Lew, A. and Darve, E. (2011), "Assembly of finite element methods on graphics processors", Int. J. Numer. Meth. Eng., 85(5), 640-669.   DOI   ScienceOn
23 DOE Exascale Initiative Roadmap (2009), Architecture and Technology Workshop, San Diego, December.
24 DOE Office of Science Summary report of the Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee (2010), The opportunities and challenges of exascale computing.
25 Duarte, C.A. and Oden, J.T. (1996), "An h-p adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 139(1-4), 237-262.   DOI   ScienceOn
26 Duarte, C.A., Babuska, I. and Oden, J.T. (2000), "Generalized finite element methods for three-dimensional structural mechanics problems", Comput. Struct., 77, 215-232.   DOI   ScienceOn
27 Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite elementmethod for the simulation of three-dimensional dynamic crack propagation", Comput. Meth. Appl. Mech. Eng., 190, 2227-2262.   DOI   ScienceOn
28 Karatarakis, A., Metsis, P. and Papadrakakis, M. (2013), "GPU-Acceleration of stiffness matrix calculation and efficient initialization of EFG meshless methods", Comput. Meth. Appl. Mech. Eng., 258, 63-80.   DOI   ScienceOn
29 Duarte, C.A. and Kim, D.J. (2008), "Analysis and applications of a generalized finite element method with global-local enrichment functions", Comput. Meth. Appl. Mech. Eng., 197(6-8), 487-504.   DOI   ScienceOn