• 제목/요약/키워드: Inter-laminar strength

검색결과 14건 처리시간 0.019초

FRP 보강근의 계면전단강도에 대한 임계온도와 노출시간의 영향 (Critical Temperature for Inter-Laminar Shear Strength and Effect of Exposure Time of FRP Rebars)

  • 문도영
    • 콘크리트학회논문집
    • /
    • 제25권1호
    • /
    • pp.45-51
    • /
    • 2013
  • 고온에 노출된 GFRP와 CFRP 보강근의 단지간보 실험을 통해 계면전단강도를 측정하였다. 1차 실험으로서, 노출시간과 온도를 변수로 하였으며, 적용된 고온 조건하에서 강도의 변화를 고찰하였으다. 1차 실험의 결과로부터 두가지 보강근에 대하여 임계온도가 $270^{\circ}C$로 동일한 것을 확인하였다. 이 연구에서 임계온도는 상온에서의 계면전단강도의 50%의 손실을 발생시키는 온도로 정의하였다. 계면전단강도에 대한 임계온도는 섬유의 종류가 아닌 레진이 성능에 지배된다는 것이다. 2차 실험에서는 임계온도하에서 0.25시간의 간격으로 노출시간에 대한 영향을 고찰하였다. 모든 실험 결과로부터, 노출시간의 영향은 노출온도에 비하여 그 영향이 크진 않지만 무시할 정도는 아닌 것으로 나타났다. 더욱이, 그 영향은 임계온도하에서 매우 중대함을 확인하였다.

고온손상된 GFRP 보강근의 장기 잔존 계면전단강도 예측 (Prediction of Long-term Residual Inter-laminar Shear Strength of Thermally Damaged GFRP Rebar)

  • 김민철;문도영;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권3호
    • /
    • pp.108-115
    • /
    • 2014
  • GFRP 보강근의 역학적 성능은 고온과 콘크리트의 알칼리 환경에서 크게 감소된다. 본 연구에서는 GFRP 보강근이 열손상 뒤, 알칼리 환경에 추가로 노출되었을 때의 계면전단강도변화를 고찰하는데 집중하였다. 이를 위하여 GFRP 보강근 시편은 270도의 열에 1시간동안 노출된 후 알칼리 용액에 장기간 노출되었으며, 전단시험에 의하여 파괴되었다. 비교를 위하여 열손상이 없는 시편도 같은 기간 동안 알칼리 용액에 노출된 후 전단에 의하여 파괴되었다. 결과에서, 열손상을 받은 GFRP보강근의 계면전단강도의 감소가 열손상이 없는 보강근 보다 훨씬 큰 것으로 나타났다. 본 실험을 근거로 하여, 열손상을 미리 받은 GFRP 보강근이 알칼리에 노출되었을 때, 장기 잔존계면전단강도의 예측을 위한 2차식을 제시하였다.

Carbon/Epoxy 복합재료 구조물의 층간강도 향상 연구 (Study on the Improvement of Inter-laminar Bonding Strength of Carbon/Epoxy Composite Structures)

  • 최재호;송흥섭;박인서;박승범;황병선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.161-164
    • /
    • 2004
  • In these days, composite materials are applied to the military field like parts of air crafts, rockets, ammunitions and so on. As high pressure is loaded on the composite body, however, cracks or delamination phenomena can be occurred between layers of laminate. These cracks or delamination usually cause a deterioration of mechanical properties under the complicated loads. In this study, methods for improvement of the inter-laminar bonding strength of thick carbon/epoxy composite structures are suggested and discussed in terms of segment bending test.

  • PDF

다양한 섬유강화 구조를 갖는 NITE-SiC/SiC 복합재료의 층간 강도 특성 연구 (Inter-laminar Strength of NITE-SiC/SiC Composites with Various Fiber Reinforcing Architecture)

  • 김종일
    • 한국분말재료학회지
    • /
    • 제31권5호
    • /
    • pp.437-444
    • /
    • 2024
  • The mechanical performance of SiC/SiC composites is significantly influenced by the architecture of fiber reinforcement. Among the various fabrication methods, the nano-powder infiltration transition/eutectic (NITE) process is a promising technique that is capable of achieving a dense and stoichiometric SiC matrix. The reinforcement architecture, such as cross-ply (CP) or woven prepreg (WP), is determined during the preform stage of the NITE process, which is crucial in determining the mechanical properties of SiC/SiC composites. In this study, the tensile test and double notch shear (DNS) test were conducted using NITE-SiC/SiC composites to investigate the effect of the fiber reinforcing architecture on the fracture mechanism of SiC/SiC composites. The tensile strength and maximum shear strength of both CP and WP specimens were nearly identical. However, other mechanical properties, particularly those of CP specimens, exhibited significant variability. A comparison of fracture surfaces and load-displacement curve analyses from the DNS tests revealed that the cross points of the longitudinal or transverse fibers act as obstacles to both deformation and crack propagation. These obstacles were found to be more densely distributed in WP specimens than in CP specimens. The variability observed in the mechanical properties of CP specimens is likely due to size effects caused by the sparser distribution of these obstacles compared to the WP specimens.

전자석 구조물용 적층 유리섬유강화 복합재료의 기계적 특성 (Mechanical Properties of the Laminated Glass Fiber-Reinforced Plastic Composites for Electromagnet Structure System)

  • 박한주;김학근;송준희
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.589-595
    • /
    • 2011
  • Laminated glass fiber-reinforced plastic (GFRP) composites were applied to an insulating structure of a magnet system for a nuclear fusion device. Decreased inter-laminar strength by a strong repulsive force between coils which is induced a problem of structural integrity in laminated GFRPs. Therefore, it is important to investigate the inter-laminar characteristics of laminated GFRP composites in order to assure more reliable design and better structural integrity. Three types of the laminated GFRP composites using a high voltage insulating materials were fabricated according to each molding process. To evaluate the grade of the fabricated composites, mechanical tests, such as hardness, tensile and compressive tests,were carried out. The autoclave molding composites satisfied almost of the mechanical properties reguested at the G10 class standard, but the vacuum impregnation (VPI) and Prepreg composites did not.

나노필러 종류에 따른 열가소성 탄소 섬유강화 복합재료의 제작 물성 비교 평가 (Comparative Evaluation of Manufacturing Properties of Carbon Fiber Reinforced Thermoplastic Polymer (CFRTP) according to Nanofiller Type)

  • 박준하;윤순호;김민국
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.186-189
    • /
    • 2024
  • 본 연구는 나노필러가 혼합된 열가소성 탄소섬유강화 복합재료(Carbon fiber reinforced thermoplastic polymer, CFRTP)의 물성을 비교 평가하였다. Polyamide 6 (PA6) 수지에 Multi-wall carbon nano tube (MWCNT), Silicon oxide, Core shell rubber, Aramid nano fiber 등의 다양한 나노필러를 혼합한 후, 이를 기지재(Matrix)로 탄소섬유강화복합 재료(CFRP)를 제조하여 그 물성을 측정하였다. 나노필러의 종류와 혼합비율에 따라, 인장강도, 층간계면결합력 (Inter-laminar shear strength), Izod 충격 강도 등이 측정되었다. 인장 강도와 충격 강도의 경우 Core shell rubber를 혼합한 경우 가장 높은 물성을 가졌으나, 계면결합력은 silicon oxide를 1 wt.% 이하 혼합하였을 때 최적값을 가졌다.

3D Weaving Process : Development of Near Net Shape Preforms and Verification of Mechanical Properties

  • Klapper, Vinzenz;Jo, Kwang-Hoon;Byun, Joon-Hyung;Song, Jung-Il;Joe, Chee-Ryong
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.96-100
    • /
    • 2021
  • The lightweight industry continuously demands reliable near-net-shape fabrication where the preform just out-of-machine is close to the final shape. In this study, different half-finished preforms are made π-beams. Then the preforms are unfolded to make a 3D shape with integrated structure of fibers, providing easier handling in the further processing of composites. Several 3D textile preforms are made using weaving technique and are examined after resin infusion for mechanical properties such as inter-laminar shear strength, compressive strength and tensile strength. Considering that the time and labor are important parameters in modern production, 3D weaving technique reduces the manufacturing steps and therefore the costs, such as hand-lay up of textile layers, cutting, and converting into preform shape. Hence this 3D weaving technique offers many possibilities for new applications with efficient composite production.

나노탄소섬유와 나노카바이드섬유를 이용한 복합재의 제조와 활용에 관한 연구 (Preparation and Application of Fiber Composites made of Carbon Nanofibers and Carbide Nanofibers)

  • 임연수;김기덕;이재춘;김명수;김성수
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.569-575
    • /
    • 2000
  • Fabrication of carbon fiber reinforced composites was carried out by hand lay-up method. Carbon nanofibers and SiC nanofibers were used as filler in the composites fabrication. Carbon nanofibers, one of the new carbon materials, have 5∼500 nm in diameter and 5-10 nm in length. SiC nanofibers were modified by silicon monoxide vapor with carbon nanofibers. The composites were carbonized at 1000$^{\circ}C$ in a nitrogen atmosphere, and then densified by molten pitches impregnated in vacuum. Multiple cycles of liquid pitch impregnation and carbonization were carried out to obtain a desired density. The composites were characterized by density, microstructure. The inter-laminar shear strength (ILSS) test was performed for mechanical properties. For the new application, the microwave reflective proeprty of composites was investigated. Dielectric constant and permeability spectrum were measured in 12∼18 GHz frequency ranges. On the basis of the wave propagation theory in a lossy media, the reflection loss from the composite inter-layer was predict as a function of frequency.

  • PDF

온도변화가 CFRP 적층재의 충격후 잔류굽힘강도에 미치는 영향 (The Effects of Temperature Change on the Residual Bending Strength of CFRP Laminates after Impact)

  • 나승우;정종안;양인영
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, when CF/EPOXY laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(inter laminar separation and transverse crack) of CF/EPOXY laminates and the relationship between residual life and impact damages ale experimentally investigated. Composite laminates used in this experiment are CF/EPOXY orthotropic laminated plates, which have two-interfaces $[0^{\circ}_6/90^{\circ}_6]S$ and four-interfaces $[0^{\circ}_3/90^{\circ}_6/0^{\circ}_3]S$. CF/EPOXY specimens with impact damages caused by a steel ball launched from the air gun were observed by the scanning acoustic microscope under room and high temperatures. In this experimental results, various relations were experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/EPOXY laminates. And as the temperature of CF/PEEK laminates increases, the delaminaion areas of impact-induced damages decrease linearly. A linear relationship between the impact energy and the delamination areas were observed. As the temperature of CF/PEEK laminates increases, the delamination areas decrease because of higher initial delaminatin damage energy.

탄소섬유/에폭시 복합적층판에 대한 저온에서의 기계적특성 실험평가 (Experimental Evaluation of Mechanical Properties for the Carbon/Epoxy Composite Laminates at Low Temperature)

  • 허남일;사정우;조승연;도철진;오영국;최창호;권면;이경수;이상연;김재훈
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.41-44
    • /
    • 2001
  • Mechanical test of the Carbon Fiber Reinforced Plastics (CFRP) composite specimen was performed based on the ASTM code at the ambient and low temperature. Tension, compression in-plane shear, and inter-laminar shear properties of the composite laminates were evaluated experimentally using the Universal Testing Machine(UTM) system at the temperature of $24^{\circ}C$,$-76^{\circ}C$ , and $-196^{\circ}C$. From the test results it was found that the CFRP chosen for the Korea Superconducting Tokamak Advanced Research(KSTAR) magnet supporting post had smaller tensile strength and larger compressive strength at the low temperature than those of the ambient temperature because of material ductility.

  • PDF