DOI QR코드

DOI QR Code

Inter-laminar Strength of NITE-SiC/SiC Composites with Various Fiber Reinforcing Architecture

다양한 섬유강화 구조를 갖는 NITE-SiC/SiC 복합재료의 층간 강도 특성 연구

  • Jong-il Kim (Engineering Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 김종일 (한국세라믹기술원 엔지니어링소재센터)
  • Received : 2024.08.06
  • Accepted : 2024.09.20
  • Published : 2024.10.28

Abstract

The mechanical performance of SiC/SiC composites is significantly influenced by the architecture of fiber reinforcement. Among the various fabrication methods, the nano-powder infiltration transition/eutectic (NITE) process is a promising technique that is capable of achieving a dense and stoichiometric SiC matrix. The reinforcement architecture, such as cross-ply (CP) or woven prepreg (WP), is determined during the preform stage of the NITE process, which is crucial in determining the mechanical properties of SiC/SiC composites. In this study, the tensile test and double notch shear (DNS) test were conducted using NITE-SiC/SiC composites to investigate the effect of the fiber reinforcing architecture on the fracture mechanism of SiC/SiC composites. The tensile strength and maximum shear strength of both CP and WP specimens were nearly identical. However, other mechanical properties, particularly those of CP specimens, exhibited significant variability. A comparison of fracture surfaces and load-displacement curve analyses from the DNS tests revealed that the cross points of the longitudinal or transverse fibers act as obstacles to both deformation and crack propagation. These obstacles were found to be more densely distributed in WP specimens than in CP specimens. The variability observed in the mechanical properties of CP specimens is likely due to size effects caused by the sparser distribution of these obstacles compared to the WP specimens.

Keywords

Acknowledgement

본 논문은 2024년도 한국세라믹기술원 기본연구사업의 재원으로 수행되었습니다(KFB24004-0-01).

References

  1. R. Naslain: Compos. Sci. Technol., 64 (2004) 155.
  2. A. Kohyama and H. Kishimoto: Nuclear Safety and Simulation, 4 (2013) 72.
  3. Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R. J. Shinavski, A. Hasegawa and L. L. Snead: J. Nucl. Mater., 448 (2014) 448.
  4. T. Hinoki, Y. Katoh, L. L. Snead, H. C. Jung, K. Ozawa, Hi. Katsui, Z. H. Zhong, S. Kondo, Y. H. Park, C. Shih, C. M. Parish, R. A. Meisner and A. Hasegawa: Mater. Trans., 54 (2013) 472.
  5. T. Hinoki, E. Lara-Curzio and L. L. Snead: Fusion Sci. Technol., 44 (2003) 211.
  6. M. Zhang, N. Zhao, Q. Yu, Z. Liu, R. Qu, J. Zhang, S. Li, D. Ren, F. Berto, Z. Zhang and R. O. Ritchie: Nat. Commun., 13 (2022) 3247.
  7. Z. Huang and X. Li: Sci. Rep., 3 (2013) 1693.
  8. Z. Jia and L. Wang: Acta Mater., 173 (2019) 61.
  9. C.-S. Kwon, J.-M. Chae, H.-T. Kim, K.-J. Kim and S.-W. Kim: J. Powder Mater., 18 (2011) 562.
  10. T. Nozawa, K. Ozawa, Y.-B. Choi, A. Kohyama and H. Tanigawa: Fusion Eng. Des., 87 (2012) 803.
  11. K. Shimoda, A. Kohyama and T. Hinoki: Compos. Sci. Technol., 69 (2009) 1623.
  12. T. Nozawa, Y. Choi, T. Hinoki, H. Kishimoto, A. Kohyama and H. Tanigawa: Mater. Sci. Eng., 18 (2011) 162011.
  13. Y. Katoh, D. F. Wilson and C. W. Forsberg: ORNL/TM, R1, (2007) 168.
  14. S.-M. Lee, D.-S. Choi and S.-J. L. Kang: J. Powder Mater., 6 (1999) 81.
  15. A. Kohyama, S. M. Dong and Y. Katoh: Ceram. Eng. Sci. Proc., 23 (2002) 311.
  16. A. Kohyama, J. S. Park and H. C. Jung: J. Nucl. Mater., 417 (2011) 340.
  17. P. Dadras and J. S. McDowell: Exp. Mech., 30 (1990) 184.
  18. O. unal and N. Bansal: Ceram. Int., 28 (2002) 527.
  19. C. Shih, Y. Katoh, K. Ozawa and L. Snead: Fusion Reactor Materials Program, 52 (2012) 59.