• Title/Summary/Keyword: Inter-Channel Interference

Search Result 315, Processing Time 0.021 seconds

Radio Resource Management Algorithm for Uplink Coordinated Cooperative Spatial Multiplexing (셀 간 협동 CSM에서 상향 링크 용량 개선을 위한 자원 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1311-1317
    • /
    • 2010
  • In this paper, for a uplink space division multiple access system named cooperative spatial multiplexing(CSM), radio resource management(RRM) algorithms are proposed based on sharing uplink channel information among a serving base station(BS) and interfering BSs in a uplink coordinated wireless communication system. A constrained maximum transmit power algorithm is proposed for mobile station(MS) to limit uplink inter-cell interference(ICI). And joint scheduling algorithm among coordinated BSs is proposed to enhance uplink capacity through ICI mitigation by using channel information from interfering BSs. It is shown that the proposed RRM algorithm provides a considerable uplink capacity enhancement by effective ICI mitigation only with moderate complexity.

3 User Non-Linear Tomlinson-Harashima Precoding (비선형 3 User Tomlinson-Harashima 전처리 코딩)

  • Abu Hanif, Mohammad;Cho, Kye-Mun;Lee, Moon-Ho;Shin, Tae-Chol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.809-812
    • /
    • 2011
  • In this letter, in order to reduce the inter-channel interference at the transmitted side, we design the precoder based on Tomlinson-Harashima coding, which is well know for one kind of non-linear precoding schemes, for 3-user MIMO wireless systems. And its performance is also analyzed in comparison with that of the Dirty Paper Coding based precoder.

Link Adaptation Method of the Block Coded Modulation for UWB-IR (무선광대역통신을 위한 블록부호화방식의 링크 적응 기법)

  • Min, Seungwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.24-35
    • /
    • 2018
  • In wireless communications environments, a link adaptation technique that selects the proper rate from among several transmission rates is adopted to cope with variations in channel status. In block coded modulation, the frame time and/or the block length can be adjusted to the channel status. A smaller frame time can cause inter-frame interference (IFI), however, a larger frame time can reduce the data rate. Therefore, frame time is the design factor decided by a tradeoff between performance and the data rate. This paper presents a method to determine the frame time based on the processing gain for the channel model, CM1~CM4, recommended by IEEE 802.15a. Also, a link adaptation technique for block coded modulation is proposed for efficient communications by varying the frame time and the block length. Through simulation, link adaptation can be carried out with a step size of 2~5 nsec in a frame time range of 14~ 50 nsec for channel models CM1~CM4.

Performance Evaluation of Channel Shortening Time Domain Equalizer in Wireless LAN Environment (무선랜 환경에서 채널 단축 시간영역 등화기의 성능평가)

  • Yoon Seok-Hyun;Yu Hee-Jung;Lee Il-Gu;Jeon Tae-Hyun;Lee Sok-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.240-248
    • /
    • 2006
  • In this paper, we consider an OFDM receiver algorithm design for IEEE 802.11a/p system, which targeting large coverage area while keeping the transmission format unchanged. Particularly, taking into account the inter-symbol interference(ISI) and inter-carrier interference(ICI) that can be induced with large RMS delay spread, we employ channel shortening time-domain equalizer(TEQ) and evaluate the receiver performance in terms of SINR and packet error rate(PER). The preamble defined in IEEE802.11a/p is used to estimated the initial equalizer tap coefficients. Primary purpose of the paper is to give an answer to the question, though partially, whether or not 16-QAM constellation can be used in none line of sight environment at the boundary of a large coverage area. To this end, we first analyze the required TEQ parameters for the target channel environment and then perform simulation for PER performance evaluation in a generic frequency selective fading channel with exponential power-delay profile.

OFDM/OQAM-IOTA System (OFDM/OQAM-IOTA 시스템)

  • Zhou, Xiao;Heo, Joo;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.120-128
    • /
    • 2004
  • Although conventional OFDM/QAM modulation scheme using guard interval is robust to channel induced ISI (Inter-Symbol Interference) in time-domain, it is very sensitive to ICI (Inter-Carrier Interference) due to doppler effect in frequency domain. OFDM/OQAM-IOTA modulation scheme utilizes IOTA (Isotropic Orthogonal Transform Algorithm) filter that has orthogonality in time and frequency domain so that it is robust to delay spread and doppler effect. OFDM/OQAM-IOTA system can increase bandwidth effeciency since it does not use guard interval. In this paper, we show the structure of OFDM/OQAM-IOTA and perfect channel estimation scheme for OFDM/OQAM-IOTA system. We also compare OFDM/OQAM-IOTA system and OFDM/QAM system in AWGN and 1-path Rayleigh fading channel. Simulation results show that OFDM/OQAM system outperforms OFDM/QAM system.

  • PDF

Inter-carrier Interference Reduction Method Using Mask in a Fast Moving OFDM Receiver (고속 이동 OFDM 수신기에서 마스크를 이용한 반송파간 간섭 감소 방법)

  • Gu, Young Mo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.474-480
    • /
    • 2013
  • In orthogonal frequency division multiplexing system (OFDM), rapid channel variation caused by fast moving receiver leads to a loss of subcarrier orthogonality which results in inter-carrier interference (ICI) and receiver performance degradation. In conventional receivers, performance is enhanced by estimating ICI and removing it from received signals. In this paper, an ICI reduction scheme using a time-domain mask and adding is proposed. The proposed scheme is applied to DVB-T receiver to prove the Doppler mobile performance enhancement.

Current-Integrating DFE with Sub-UI ISI Cancellation for Multi-Drop Channels

  • Park, Hwan-Wook;Lim, Hyun-Wook;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.112-117
    • /
    • 2016
  • This paper presents a half-rate current-integrating DFE receiver with sub-unit interval (sub-UI) inter-symbol interference (ISI) cancellation. By having a single additional DFE tap in each data path, the proposed DFE receiver can minimize BER degradation due to input pattern dependency and feedback tap latency problems in conventional current-integrating DFE receivers. The proposed DFE receiver was designed and fabricated in a 45 nm CMOS process, whose measurement results indicated that the BER bathtub width is increased from 0.235 UI to 0.315 UI (34% improvement) at $10^{-12}$ BER level.

Implementation of Software Platform for STBC-OFDM based WiBro Systems (STBC-OFDM 기반의 WiBro 시스템 소프트웨어 플랫폼 구현)

  • Bae, Jung-Nam;Oh, Young-Chul;Yoo, Sang-Hoon;Wi, Hynn-Ho;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.525-530
    • /
    • 2008
  • There are a few core technologies to enable high-performance $4^{th}$ generation (4G) broadband wireless communication system. A multiple input multiple output (MIMO) provides high-rate transmission through expended channels by multiple array antennas in both sender and receiver side. Also orthogonal frequency division multiplexing (OFDM) is well-known as the most appropriate technique for high data rate transmission such as Mobile WiMAX and WLAN. Efficient decrease of inter-carrier interference (ISI) and inter-carrier interference (ICI) are the reasons for why OFDM is suitable for high-performance transmission, 4G mobile communication. In this paper, we mainly focus on two of objects, combination between MIMO and OFDM, and OFDM channel simulator using Ray-tracing algorithm. The results of this paper can be used implementation of a Wireless Software Platform for 4G Mobile Communication Systems.

  • PDF

An Intercell Interference Reduction Technique for OFDM-based Cellular Systems Using Virtual Multiple Antenna (OFDM 기반 셀룰러 시스템에서 가상 다중안테나를 이용한 셀간 간섭 감쇄 기법)

  • Lee Kyu-In;Ko Hyun-Soo;Ahn Jae-Young;Cho Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.32-38
    • /
    • 2006
  • In this paper, an intercell interference (ICI) reduction technique is proposed for OFDM-based cellular systems using the concept of virtual multiple antenna where multiple antenna techniques are performed on a set of subcarriers, not on the actual antenna array. The proposed technique is especially effective for user terminals with a single antenna at cell boundary in fully-loaded OFDM cellular systems with a frequency reuse factor equal to 1. Proposed ICI reduction techniques developed for SISO and MISO environments are shown to be robust to symbol timing offsets and efficient for various cell environments by adjusting group size depending on the number of adjacent cells. Also, the concept of a virtual signature randomizer (VSR) is introduced to improve channel separability in the virtual MIMO approach. It is shown by simulation that the proposed techniques are effective in reducing ICI and inter-sector interference compared with the conventional methods.

Design and Performance Improvement of Simultaneous Single Band Duplex System Using Turbo Equalizer (터보 등화기를 사용한 SSD 시스템 설계와 성능 개선)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.28-35
    • /
    • 2014
  • In this paper, we propose a SSD(simultaneous single band duplex) system with turbo equalizer for full-duplex over harsh ISI(inter symbol interference) channel. The proposed system uses RF(radio frequency) cancellation and digital cancellation to cancel self-interference caused by simultaneous single band duplex communication. Also, using turbo equalizer, the proposed system equalizes signal after digital cancellation. In this paper, we design SSD system with turbo equalizer. And then we evaluate BER(bit error rate) performance of the proposed system comparison with SSD system with adaptive equalizer. We use simulink program to confirm BER performance of the proposed system. The simulation results shows that the proposed system equalizes received signal effectively over harsh ISI channel and BER performance of the proposed system is better than BER performance of SSD system with adaptive equalizer.