• Title/Summary/Keyword: Intensity of detection

Search Result 960, Processing Time 0.03 seconds

Tsunami-induced Change Detection Using SAR Intensity and Texture Information Based on the Generalized Gaussian Mixture Model

  • Jung, Min-young;Kim, Yong-il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.195-206
    • /
    • 2016
  • The remote sensing technique using SAR data have many advantages when applied to the disaster site due to its wide coverage and all-weather acquisition availability. Although a single-pol (polarimetric) SAR image cannot represent the land surface better than a quad-pol SAR image can, single-pol SAR data are worth using for disaster-induced change detection. In this paper, an automatic change detection method based on a mixture of GGDs (generalized Gaussian distribution) is proposed, and usability of the textural features and intensity is evaluated by using the proposed method. Three ALOS/PALSAR images were used in the experiments, and the study site was Norita City, which was affected by the 2011 Tohoku earthquake. The experiment results showed that the proposed automatic change detection method is practical for disaster sites where the large areas change. The intensity information is useful for detecting disaster-induced changes with a 68.3% g-mean, but the texture information is not. The autocorrelation and correlation show the interesting implication that they tend not to extract agricultural areas in the change detection map. Therefore, the final tsunami-induced change map is produced by the combination of three maps: one is derived from the intensity information and used as an initial map, and the others are derived from the textural information and used as auxiliary data.

Object Detection in a Still FLIR Image using Intensity Ranking Feature (밝기순위 특징을 이용한 적외선 정지영상 내 물체검출기법)

  • Park Jae-Hee;Choi Hak-Hun;Kim Seong-Dae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.37-48
    • /
    • 2005
  • In this paper, a new object detection method for FLIR images is proposed. The proposed method consists of intensity ranking feature and a classification algerian using the feature. The intensity ranking feature is a representation of an image, from which intensity distribution is regularized. Each object candidate region is classified as object or non-object by the proposed classification algorithm which is based on the intensity ranking similarity between the candidate and object training images. Using the proposed algorithm pixel-wise detection results can be obtained without any additional candidate selection algorithm. In experimental results, it is shown that the proposed ranking feature is appropriate for object detection in a FLIR image and some vehicle detection results in the situation of existing noise, scale variation, and rotation of the objects are presented.

Dual Detection-Guided Newborn Target Intensity Based on Probability Hypothesis Density for Multiple Target Tracking

  • Gao, Li;Ma, Yongjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5095-5111
    • /
    • 2016
  • The Probability Hypothesis Density (PHD) filter is a suboptimal approximation and tractable alternative to the multi-target Bayesian filter based on random finite sets. However, the PHD filter fails to track newborn targets when the target birth intensity is unknown prior to tracking. In this paper, a dual detection-guided newborn target intensity PHD algorithm is developed to solve the problem, where two schemes, namely, a newborn target intensity estimation scheme and improved measurement-driven scheme, are proposed. First, the newborn target intensity estimation scheme, consisting of the Dirichlet distribution with the negative exponent parameter and target velocity feature, is used to recursively estimate the target birth intensity. Then, an improved measurement-driven scheme is introduced to reduce the errors of the estimated number of targets and computational load. Simulation results demonstrate that the proposed algorithm can achieve good performance in terms of target states, target number and computational load when the newborn target intensity is not predefined in multi-target tracking systems.

Detection of a Light Region Based on Intensity and Saturation and Traffic Light Discrimination by Model Verification (명도와 채도 기반의 점등영역 검출 및 모델 검증에 의한 교통신호등 판별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1729-1740
    • /
    • 2017
  • This paper describes a vision-based method that effectively recognize a traffic light. The method consists of two steps of traffic light detection and discrimination. Many related studies have used color information to detect traffic light, but color information is not robust to the varying illumination environment. This paper proposes a new method of traffic light detection based on intensity and saturation. When a traffic light is turned on, the light region usually shows values with high saturation and high intensity. However, when the light region is oversaturated, the region shows values of low saturation and high intensity. So this study proposes a method to be able to detect a traffic light under these conditions. After detecting a traffic light, it estimates the size of the body region including the traffic light and extracts the body region. The body region is compared with five models which represent specific traffic signals, then the region is discriminated as one of the five models or rejected as none of them. Experimental results show the performance of traffic light detection reporting the precision of 97.2%, the recall of 95.8%, and correct recognition rate of 94.3%. These results shows that the proposed method is effective.

Closely Spaced Target Detection using Intensity Sorting-based Context Awareness

  • Kim, Sungho;Won, Jin-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1839-1845
    • /
    • 2016
  • Detecting remote targets is important to active protection system (APS) or infrared search and track (IRST) applications. In normal situation, the well-known constant false alarm rate (CFAR) detector works properly. However, decoys in APS or closely spaced targets in IRST degrade the detection capability by increasing background noise level in the CFAR detector. This paper presents a context aware CFAR detector by the intensity sorting and selection of background region to reduce the effect of neighboring targets that lead to incorrect estimation of background statistics. The existence of neighboring targets can be recognized by intensity sorting where neighboring targets usually show highest ranks. The proposed background statistics (mean, standard deviation) estimation method from median local pixels can be aware of the background context and reduce the effects of the neighboring targets, which increase the signal-to-clutter ratio. The experimental results on the synthetic APS sequence, real adjacent target sequence, and remote pedestrian sequence validated that the proposed method produced an enhanced detection rate with the same false alarm rate compared with the hysteresis-CFAR (H-CFAR) detection.

Proposal and design of reflecting optical system to improve detection intensity in fluorescence confocal scanning microscopy (형광 공초점 주사 현미경의 측정 강도 향상을 위한 반사 광학계의 제안 및 설계)

  • 강동균;서정우;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.187-190
    • /
    • 2002
  • Confocal microscopy is very popular technology in bio-medical inspection due to its ability to reject background signals and to measure very thin slide of thick specimens, which is called optical sectioning. But intensity of detected signal in fluorescence type confocal microscopy is so small that only 0.2% of emitted fluorescence light can be detected in the best case. In this paper, we proposed the reflecting optical system to improve the detection intensity and designed the optical system by optimal design method. At the end of the paper, we analyzed the characteristics of the proposed reflecting optical system.

  • PDF

A study on EPD(End Point Detection) controller on plasma teaching process (플라즈마 식각공정에서의 EPD(End Point Detection) 제어기에 관한 연구)

  • 최순혁;차상엽;이종민;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.415-418
    • /
    • 1996
  • Etching Process, one of the most important process in semiconductor fabrication, has input control part of which components are pressure, gas flow, RF power and etc., and plasma gas which is complex and not exactly understood is used to etch wafer in etching chamber. So this process has not real-time feedback controller based on input-output relation, then it uses EPD(End Point Detection) signal to determine when to start or when to stop etching. Various type EPD controller control etching process using EPD signal obtained from optical intensity of etching chamber. In development EPD controller we concentrate on compensation of this signal intensity and setting the relative signal magnitude at first of etching. We compensate signal intensity using neural network learning method and set the relative signal magnitude using fuzzy inference method. Potential of this method which improves EPD system capability is proved by experiences.

  • PDF

A Bilateral Symmetry Average Method for Robust Face Detection against Illumination Variation (조명 변화에 강인한 얼굴 검출을 위한 좌우대칭 평균화 기법)

  • Cho Chi-Young;Kim Soo-Hwang
    • Journal of Game and Entertainment
    • /
    • v.2 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • In a face detection system based on template matching, histogram equalization or log transform is applied to an input image for the intensity normalization and the image improvement. It is known that they are noneffective in improving an image with intensity distortion by illumination variation. In this paper, we propose an efficient image improvement method called as a bilateral symmetry average for images with intensity distortion by illumination variation. Experimental results show that our method delivers the detection performance better than previous methods and also remarkably reduces the number of face candidates.

  • PDF

Block and Fuzzy Techniques Based Forensic Tool for Detection and Classification of Image Forgery

  • Hashmi, Mohammad Farukh;Keskar, Avinash G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1886-1898
    • /
    • 2015
  • In today’s era of advanced technological developments, the threats to the authenticity and integrity of digital images, in a nutshell, the threats to the Image Forensics Research communities have also increased proportionately. This happened as even for the ‘non-expert’ forgers, the availability of image processing tools has become a cakewalk. This image forgery poses a great problem for judicial authorities in any context of trade and commerce. Block matching based image cloning detection system is widely researched over the last 2-3 decades but this was discouraged by higher computational complexity and more time requirement at the algorithm level. Thus, for reducing time need, various dimension reduction techniques have been employed. Since a single technique cannot cope up with all the transformations like addition of noise, blurring, intensity variation, etc. we employ multiple techniques to a single image. In this paper, we have used Fuzzy logic approach for decision making and getting a global response of all the techniques, since their individual outputs depend on various parameters. Experimental results have given enthusiastic elicitations as regards various transformations to the digital image. Hence this paper proposes Fuzzy based cloning detection and classification system. Experimental results have shown that our detection system achieves classification accuracy of 94.12%. Detection accuracy (DAR) while in case of 81×81 sized copied portion the maximum accuracy achieved is 99.17% as regards subjection to transformations like Blurring, Intensity Variation and Gaussian Noise Addition.