• Title/Summary/Keyword: Intensity modulated radiation therapy (IMRT)

Search Result 202, Processing Time 0.028 seconds

Treatment outcomes of radiotherapy for anaplastic thyroid cancer

  • Park, Jong Won;Choi, Seo Hee;Yoon, Hong In;Lee, Jeongshim;Kim, Tae Hyung;Kim, Jun Won;Lee, Ik Jae
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.103-113
    • /
    • 2018
  • Purpose: Anaplastic thyroid cancer (ATC) is a rare tumor with a lethal clinical course despite aggressive multimodal therapy. Intensity-modulated radiotherapy (IMRT) may achieve a good therapeutic outcome in ATC patients, and the role of IMRT should be assessed. We retrospectively reviewed outcomes for ATC treated with three-dimensional conformal radiotherapy (3D-CRT) or IMRT to determine the optimal treatment option and explore the role of radiotherapy (RT). Materials and Methods: Between December 2000 and December 2015, 41 patients with pathologically proven ATC received RT with a sufficient dose of ${\geq}40Gy$. Among them, 21 patients (51%) underwent surgery before RT. Twenty-eight patients received IMRT, and 13 received 3D-CRT. Overall survival (OS) and progression-free survival (PFS), patterns of failure, and toxicity were examined. Results: The median follow-up time for survivors was 38.0 months. The median and 1-year OS and PFS rates were 7.2 months and 29%, 4.5 months and 15%, respectively. Surgery significantly improved the prognosis (median OS: 10.7 vs. 3.9 months, p = 0.001; median PFS: 5.9 vs. 2.5 months, p = 0.007). IMRT showed significantly better PFS and OS than 3D-CRT, even in multivariate analysis (OS: hazard ratio [HR] = 0.30, p = 0.005; PFS: HR = 0.33, p = 0.005). Significantly higher radiation dose could be delivered with IMRT than 3D-CRT ($EQD2_{10}$ 66 vs. 60 Gy, p = 0.005). Only 2 patients had grade III dermatitis after IMRT. No other severe toxicity ${\geq}grade$ III occurred. Conclusion: Patients with ATC showed better prognosis through multimodal treatment. Furthermore, IMRT could achieve favorable survival rates by safely delivering higher dose than 3D-CRT.

Feasibility Study of the Real-Time IMRT Dosimetry Using a Scintillation Screen (고감도 형광판을 이용한 실시간 선량측정 가능성 연구)

  • Lim Sang Wook;Yi Byong Yong;Ko Young Eun;Ji Young Hoon;Kim Jong Hoon;Ahn Seung Do;Lee Sang Wook;Shin Seong Soo;Kwon Soo-Il;Choi Eun Kyoung
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.64-68
    • /
    • 2004
  • Purpose : To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. Materials and Methods : The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom In order to capture the visible light from the scintillation screen. To observe the dose distribution In real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the Intensity modulated radiation therapy (IMRT). Results : The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Conclusion : Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible.

Dosimetric Analysis on the Effect of Target Motion in the Delivery of Conventional IMRT, RapidArc and Tomotherapy

  • Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.164-170
    • /
    • 2017
  • One of the methods to consider the effect of respiratory motion of a tumor target in radiotherapy is to establish a treatment plan with the internal target volume (ITV) created based on an accurate analysis of the target motion displacement. When this method is applied to intensity modulated radiotherapy (IMRT), it is expected to yield a different treatment dose distribution under the motion condition according to the IMRT method. In this study, we prepared ITV-based IMRT plans with conventional IMRT using fixed gantry angle beams, RapidArc using volumetric modulated arc therapy, and tomotherapy using helical therapy. Then, the variation in dose distribution caused by the target motion was analyzed by the dose measurement in the actual motion condition. A delivery quality assurance plan was prepared for the established IMRT plan and the dose distribution in the actual motion condition was measured and analyzed using a two-dimensional diode detector placed on a moving phantom capable of simulating breathing movements. The dose measurement was performed considering only a uniform target shape and motion in the superior-inferior (SI) direction. In this condition, it was confirmed that the error of the dose distribution due to the target motion is minimum in tomotherapy. This is thought to be due to the characteristic of tomotherapy that treats the target sequentially by dividing it into several slices. When the target shape is uniform and the main target motion direction is SI, it is considered that tomotherapy for the ITV-based IMRT method has a characteristic which can reduce the dose difference compared with the plan dose under the target motion condition.

Assessment of the Usefulness of an IMRT Plan Using a Shell-Type Pseudo Target with Patients in Stage III or IV of NSCLC (비소세포폐암 III, IV기 환자에 있어서 Shell-Type Pseudo Target을 이용한 세기 조절 방사선치료계획기법의 유용성 평가)

  • Lee, Sang-Bong;Park, Ki-Ju;Park, Du-Chan;Kim, Man-Wo;Kim, Jun-Gon;Noh, Sung-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.95-106
    • /
    • 2012
  • Purpose: The objective of this study was to investigate the usefulness of an IMRT treatment plan according to whether there was a shell-type pseudo target during radiation therapy for patients in Stage III or IV of non-small cell lung cancer (NSCLC). Materials and Methods: After setting an IMRT (Intensity-Modulated Radiation Therapy, IMRT) plan for when there was a shell-type pseudo target (SPT) and when there was none (WSPT) with 22 patients in Stage III or IV of NSCLC, the investigator analyzed dose-volume histograms (DVHs) and made assessment with dosimetric comparisons such as homogeneity index (HI) inside the tumor target, conformity index (CI) of the tumor target, spinal cord maximum dose, Esophagus $V_{50%}$, mean lung dose (MLD), and $V_{40%}$, $V_{30%}$, $V_{20%}$, $V_{10%}$, $V_{5%}$. Results: The mean CI of WSPT and SPT was $1.22{\pm}0.04$ and $1.16{\pm}0.032$ ($.000^*$), respectively, and the mean HI of WSPT and SPT was $1.06{\pm}0.015$ and $1.07{\pm}0.014$ ($.000^*$), respectively. In SPT, the mean of each CI difference decreased by $-5.16{\pm}2.54%$, while HI increased by average $0.81{\pm}0.47%$. Esophagus $V_{50%}$ recorded $14.54{\pm}12.01%$ (WSPT) and $12.14{\pm}11.09%$ ($.000^*$, SPT) with the mean of SPT differences dropping by $-26.37{\pm}25.05%$. Mean spinal cord maximum dose was $3,898.44{\pm}1,075.0$ cGy (WSPT) and $3,810.8{\pm}1,134.9$ cGy ($.004^*$, SPT) with SPT dropping by average $-3.36{\pm}5.81%$. As for lung $V_{X%}$, the mean of $V_{5%}$ and $V_{10%}$ differences was $-1.62{\pm}2.29%$ ($.006^*$) and $-1.98{\pm}5.02%$ ($.005^*$), respectively with SPT making a decrease. The mean of V20%, V30%, and V40% differences was $-3.51{\pm}3.07%$ ($.000^*$), $-4.84{\pm}6.01%$ ($.000^*$), and $-6.16{\pm}8.46%$ ($.001^*$), respectively, with SPT making a decrease with statistical significance. In MLD assessment, SPT also dropped by average $-2.83{\pm}2.41%$ ($.000^*$). Those results show that SPT allows for mean 169 cGy (Max: 547 cGy, Min: 6.4 cGy) prescription dose. Conclusion: An IMRT treatment plan with SPT during radiation therapy for patients in Stage III or IV of NSCLC will help to reduce the risk of lung toxicity and radiation-induced pneumonia by cutting down radiation doses entering the normal lung, reduce the local control failure rate during radiation therapy due to increasing prescription doses to a certain degree, and increase treatment effects.

  • PDF

Small Bowel Sparing Effect of Small Bowel Displacement System in 3D-CRT and IMRT for Cervix Cancer (자궁경부암의 3D-CRT와 IMRT시 소장전위장치의 소장 선량에 대한 영향)

  • Kang, Min-Kyu;Huh, Seung-Jae;Han, Young-Yih;Park, Won;Ju, Sang-Gyu;Kim, Kyoung-Ju;Lee, Jeung-Eun;Park, Young-Je;Nam, Hee-Rim;Lim, Do-Hoon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • Purpose : In radiotherapy for cervix cancer, both 3-dimensioal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) could reduce the dose to the small bowel (SB), while the small bowel displacement system (SBDS) could reduce the SB volume in the pelvic cavity. To evaluate the effect of the SBDS on the dose to the SB in 3D-CRT and IMRT plans, 3D-CRT and IMRT plans, with or without SBDS, were compared. Materials and Methods : Ten consecutive uterine cervix cancer patients, receiving curative radiotherapy, were accrued. Ten pairs of computerized tomography (CT) scans were obtained in the prone position, with or without SBDS, which consisted of a Styrofoam compression device and an individualized custom-made abdominal immobilization device. Both 3D-CRT, using the 4-field box technique, and IMRT plans, with 7 portals of 15 MV X-ray, were generated for each CT image, and proscribed 50 Gy (25 fractions) to the isocenter. For the SB, the volume change due to the SBDS and the DVHs of the four different plans were analyzed using palled t-tests. Results : The SBDS significantly reduced the mean SB volume from 522 to 262 cm$^{3}$ (49.8$\%$ reduction). The SB volumes that received a dose of 10$\~$50 Gy were significantly reduced in 3D-CRT (65$\~$80$\%$ reduction) and IMRT plans (54$\~$67$\%$ reduction) using the SBDS. When the SB volumes that received 20$\~$50 Gy were compared between the 3D-CRT and IMRT plans, those of the IMRT without the SBDS were significantly less, by 6$\~$7$\%$, than those for the 3D-CRT without the SBDS, but the volume difference was less than 1$\%$ when using the SBDS. Conclusion : The SBDS reduced the radiation dose to the SB in both the 3D-CRT and IMRT plans, so could reduce the radiation injury of the SB.

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

Evaluation of Photoneutron Dose for Prostate Cancer Radiation Therapy by Using Optically Stimulated Luminescence Dosimeter (OSLD) (전립선암 방사선치료 시 광자극발광선량계를 이용한 광중성자선량 평가)

  • Lee, Joo-Ah;Back, Geum-Mun;Kim, Yeon-Soo;Son, Soon-Yong;Choi, Kwan-Woo;Yoo, Beong-Gyu;Jeong, Hoi-Woun;Jung, Jae-Hong;Kim, Ki-Won;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2014
  • This study is to provide basic information regarding photoneutron doses in terms of radiation treatment techniques and the number of portals in intensity-modulated radiation therapy (IMRT) by measuring the photoneutron doses. Subjects of experiment were 10 patients who were diagnosed with prostate cancer and have received radiation treatment for 5 months from September 2013 to January 2014 in the department of radiation oncology in S hospital located in Seoul. Thus, radiation treatment plans were created for 3-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric-Modulated Arc Radiotherapy (VMAT), IMRT 5, 7, and 9 portals. The average difference of photoneutron dose was compared through descriptive statistics and variance analysis, and analyzed influence factors through correlation analysis and regression analysis. In summarized results, 3D-CRT showed the lowest average photoneutron dose, while IMRT caused the highest dose with statistically significance (p <.01). The photoneutron dose by number of portals of IMRT was $4.37{\pm}1.08mSv$ in average and statistically showed very significant difference among the number of portals (p <.01). Number of portals and photoneutron dose are shown that the correlation coefficient is 0.570, highly statistically significant positive correlation (p <.01). As a result of the linear regression analysis of number of portals and photoneutron dose, it showed that photoneutron dose significantly increased by 0.373 times in average as the number of portals increased by 1 stage. In conclusion, this study can be expected to be used as a quantitative basic data to select an appropriate IMRT plans regarding photoneutron dose in radiation treatment for prostate cancer.

Dosimetric comparison of IMRT versus 3DCRT for post-mastectomy chest wall irradiation

  • Rastogi, Kartick;Sharma, Shantanu;Gupta, Shivani;Agarwal, Nikesh;Bhaskar, Sandeep;Jain, Sandeep
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • Purpose: To compare the dose distribution of three-dimensional conformal radiation therapy (3DCRT) with intensity-modulated radiation therapy (IMRT) for post-mastectomy radiotherapy (PMRT) to left chest wall. Materials and Methods: One hundred and seven patients were randomised for PMRT in 3DCRT group (n = 64) and IMRT group (n = 43). All patients received 50 Gy in 25 fractions. Planning target volume (PTV) parameters-$D_{near-max}$ ($D_2$), $D_{near-min}$ ($D_{98}$), $D_{mean}$, $V_{95}$, and $V_{107}$-homogeneity index (HI), and conformity index (CI) were compared. The mean doses of lung and heart, percentage volume of ipsilateral lung receiving 5 Gy ($V_5$), 20 Gy ($V_{20}$), and 55 Gy ($V_{55}$) and that of heart receiving 5 Gy ($V_5$), 25 Gy ($V_{25}$), and 45 Gy ($V_{45}$) were extracted from dose-volume histograms and compared. Results: PTV parameters were comparable between the two groups. CI was significantly improved with IMRT (1.127 vs. 1.254, p < 0.001) but HI was similar (0.094 vs. 0.096, p = 0.83) compared to 3DCRT. IMRT in comparison to 3DCRT significantly reduced the high-dose volumes of lung ($V_{20}$, 22.09% vs. 30.16%; $V_{55}$, 5.16% vs. 10.27%; p < 0.001) and heart ($V_{25}$, 4.59% vs. 9.19%; $V_{45}$, 1.85% vs. 7.09%; p < 0.001); mean dose of lung and heart (11.39 vs. 14.22 Gy and 4.57 vs. 8.96 Gy, respectively; p < 0.001) but not the low-dose volume ($V_5$ lung, 61.48% vs. 51.05%; $V_5$ heart, 31.02% vs. 23.27%; p < 0.001). Conclusions: For left sided breast cancer, IMRT significantly improves the conformity of plan and reduce the mean dose and high-dose volumes of ipsilateral lung and heart compared to 3DCRT, but 3DCRT is superior in terms of low-dose volume.

Incidence and Prognostic Factors of Radiation Pneumonitis in NSCLC Treated with Intensity Modulated Radiation Therapy(IMRT) (세기조절방사선치료(IMRT)로 치료한 비소세포폐암 환자에서의 방사선 폐렴)

  • Kim, Myung-Se
    • Radiation Oncology Journal
    • /
    • v.26 no.1
    • /
    • pp.35-44
    • /
    • 2008
  • Purpose: To evaluate the incidence and prognostic factors of treatment-related pneumonitis in non-small-cell lung cancer(NSCLC) patients treated with intensity modulated radiation therapy(IMRT). Materials and Methods: One-hundred-five patients with NSCLC treated with IMRT between 1 August 2004 and 30 November 2006 were analyzed retrospectively. The mean age of patients was 62.9 years, and squamous carcinomas were confirmed in 81 patients(77%). Sixty-six patients(62.9%) were classified as stage III, and 59 patients had lesions in the right lung. Twenty-seven patients were treated with a dose of 3,060 cGy preoperatively, and 10 patients were given a dose of 5,040 cGy postoperatively. Sixty-eight patients received a dose of 7,020 cGy for curative intent. Sixty-eight patients were treated with the use of the CORVUS planning system and 37 patients were treated with the use of the ECLIPSE planning system. Results: Of 105 patients, 21 patients(20%) had abnormal radiological findings, but only seven patients(6.7%) required treatment for radiation pneumonitis. Six of the seven patients had other serious lesions, including a bronchioesophageal fistula(one patient), recurrence in the treatment field(two patients), brain metastasis(one patient) and lung-to-lung metastasis(two patients); all of these patients died within 19 months after radiation treatment. Sixteen patients(23.5%) that received planning with the CORVUS system had abnormal lung findings. Five patients(13.5%) had abnormal lung findings with the use of the ECLIPSE planning system. Other prognostic factors such as perioperative radiation therapy, a volume over 10% of the V20 volume in the right lung, were also statistically significant. Conclusion: This retrospective analysis suggests that IMRT could be a beneficial treatment modality for the reduction of radiation pneumonitis in NSCLC patients. However, the higher incidence of abnormal radiological findings in perioperative patients treated with relatively lower doses($3,060{\sim}5,040$ cGy) suggest the need for judicious treatment planning in preoperative or postoperative treatment.