Incidence and Prognostic Factors of Radiation Pneumonitis in NSCLC Treated with Intensity Modulated Radiation Therapy(IMRT)

세기조절방사선치료(IMRT)로 치료한 비소세포폐암 환자에서의 방사선 폐렴

  • Kim, Myung-Se (Department of Radiation Oncology, Yeungnam University College of Medicine)
  • 김명세 (영남대학교 의과대학 방사선종양학교실)
  • Published : 2008.03.30

Abstract

Purpose: To evaluate the incidence and prognostic factors of treatment-related pneumonitis in non-small-cell lung cancer(NSCLC) patients treated with intensity modulated radiation therapy(IMRT). Materials and Methods: One-hundred-five patients with NSCLC treated with IMRT between 1 August 2004 and 30 November 2006 were analyzed retrospectively. The mean age of patients was 62.9 years, and squamous carcinomas were confirmed in 81 patients(77%). Sixty-six patients(62.9%) were classified as stage III, and 59 patients had lesions in the right lung. Twenty-seven patients were treated with a dose of 3,060 cGy preoperatively, and 10 patients were given a dose of 5,040 cGy postoperatively. Sixty-eight patients received a dose of 7,020 cGy for curative intent. Sixty-eight patients were treated with the use of the CORVUS planning system and 37 patients were treated with the use of the ECLIPSE planning system. Results: Of 105 patients, 21 patients(20%) had abnormal radiological findings, but only seven patients(6.7%) required treatment for radiation pneumonitis. Six of the seven patients had other serious lesions, including a bronchioesophageal fistula(one patient), recurrence in the treatment field(two patients), brain metastasis(one patient) and lung-to-lung metastasis(two patients); all of these patients died within 19 months after radiation treatment. Sixteen patients(23.5%) that received planning with the CORVUS system had abnormal lung findings. Five patients(13.5%) had abnormal lung findings with the use of the ECLIPSE planning system. Other prognostic factors such as perioperative radiation therapy, a volume over 10% of the V20 volume in the right lung, were also statistically significant. Conclusion: This retrospective analysis suggests that IMRT could be a beneficial treatment modality for the reduction of radiation pneumonitis in NSCLC patients. However, the higher incidence of abnormal radiological findings in perioperative patients treated with relatively lower doses($3,060{\sim}5,040$ cGy) suggest the need for judicious treatment planning in preoperative or postoperative treatment.

목적: 세기조절방사선치료로 치료한 비소세포폐암 환자에서 방사선 폐렴의 발생률과 영향을 미치는 요인을 분석하고자 하였다. 대상 및 방법: 2004년 8월 1일부터 2006년 11월 30일까지 비소세포폐암으로 확진되고 세기조절방사선치료로 치료한 환자 105명을 대상으로 하였다. 평균연령은 62.9세였고 편평상피암이 81명(77%)이었고, III기 환자가 66명으로(62.9%) 가장 많았으며 우측 폐에 병소를 가진 환자는 59명, 좌측 폐는 46명이었다. 수술 전 방사선 치료로 3,060 cGy를 조사받은 환자는 27명, 수술 후 방사선치료로 5,040 cGy를 조사받은 환자는10명이었고 7,020 cGy의 근치적 방사선치료를 받은 환자는 68명이었다. 치료계획은 CORVUS 시스템이 68명, ECLIPSE 시스템이 37명이었다. 결과: 방사선 폐렴 혹은 방사선 치료와 관련된 병리학적 이상 소견으로 본원 영상의학과에서 진단된 환자는 21명(20%)이었으나, 증상이 있어 치료를 받은 사람은 7명(6.7%)이었다. 치료받은 환자는 기관식도누공(1명), 재발(2명), 뇌전이(1명), 반대 측 폐전이(2명)를 동반한 환자였고, 항암제 치료중 원인 불명으로 화장실에서 사망한 1명을 포함 7명 모두가 사망하였으나 방사선 폐렴만이 사망 원인이라고 단정하기는 어려웠다. 영상의학과에서 진단된 21명중 CORVUS 시스템으로 치료 계획한 환자가 16명(23.5%), ECLIPSE로 계획한 환자는 5명(13.5%)이어서 CORVUS로 치료한 환자 군에서 폐렴의 발생이 유의하게 높았다. 수술 전 방사선 치료환자 27명중 5명이, 수술 후 방사선치료를 받은 환자 10명중 3명이 방사선폐렴을 보여 수술이 시행된 군이 수술이 시행되지 않은 군에 비해 상대적으로 저 선량임에도 불구하고 폐렴 발생률이 높았다. $V_{20}$은 우측에서 10% 이상인 환자, $V_{10}$은 우측에서 20% 이상인 환자에서 통계학적인 유의성을 보였다. 결론: 영상의학과에서 폐렴으로 진단된 환자는 21명이었으나 증상이 있어 치료를 받은 환자는 7명(6.7%)으로 세기조절 방사선치료가 정상조직의 손상을 줄여 합병증을 줄이는 데 기여하였다고 생각된다. 통계학적으로 유의한 예후인자로는 치료 전후의 수술, CORVUS 시스템으로의 치료계획, 우측, $V_{20}$이 10% 이상, $V_{20}$이 20% 이상인 경우 였고, 비교적 적은 방사선량을 조사받은 수술 전, 수술 후 방사선치료 환자에서 높은 비율의 증상을 동반한 폐렴을 보인 것은 향후 세심한 치료계획이 필요함을 나타내었다.

Keywords

References

  1. Grills IS, Yan DY, Martinez AA, Vicini FA, Wong JW, Kestine LL. Potential for reduced toxicity and dose escalation in the treatment of imoperable non-small cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT) 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 2003;57:875-890 https://doi.org/10.1016/S0360-3016(03)00743-0
  2. Onn A, Vaporciyan AA, Chang JY, Komaki R, Roth JA, Herbst RS. Cancer of the lung. In: Kufe DW, Bast RC, Hait WN, et al. Cancer Medicine. 7th ed. Hamilton, London: BC Decker Inc. 2006:1179-1224
  3. Huang EH, Liao Z, Cox JD, et al. Comparison of outcomes for patients with unresectable, locally advanced non-small-cell lung cancer treated with induction chemotherapy followed by concurrent chemoradiation vs. concurrent chemoradiation alone. Int J Radiat Oncol Biol Phys 2007;68:779-785 https://doi.org/10.1016/j.ijrobp.2007.01.002
  4. Choi Y, Lee HS, Hur WJ, et al. Impact of intensity modulated radiation therapy as a boost treatment on the lung dose distributions for non-small-cell lung cancer. Lung Cancer 2005;4:6-14
  5. Rojas AM, Lyn BE, Wilson EM, et al. Toxicity and outcome of a phase II trial of Taxane-based neoadjuvant chemotherapy and 3-dimensional, conformal, accelerated radiotherapy in locally advanced nonsmall cell lung cancer. Cancer 2006;107:1321-1330 https://doi.org/10.1002/cncr.22123
  6. Giraud P, De Rycke Y, Lavole A, Milleron B, Cosset J-M, Rosenzweig KE. Probability of mediastinal involvement in non-small-cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy? Int J Radiat Oncol Biol Phys 2006;64:127-135 https://doi.org/10.1016/j.ijrobp.2005.06.043
  7. Dong L, Mohan R. Intensity-modulated radiation therapy, physics and quality assurance. In: Chao KSC, Apisarnthanarax S, Ozigit G. Practical Essentials of Intensity Modulated Radiation Therapy. 2nd ed. Philadelphia, Baltimore, NY, London, Hongkong, Sydney, Tokyo: Lippincott Williams & Wilkins. 2005:2-19
  8. Boyer AL. Intensity modulated radiation therapy. In: Khan FM. Treatment Planning in Radiation Oncology. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins. 2007:142-165
  9. Wang S, Liao Z, Wei X, et al. Analysis of clinical and dosimetric factors associated with treatment related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and tree-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 2006;66:1399-1407 https://doi.org/10.1016/j.ijrobp.2006.07.1337
  10. Kimura T, Matsuura K, Murakami Y, et al. CT appearance of radiation injury of the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) for lung cancers: are patients with pulmonary emphysema also candidates for SBRT for lung cancers? Int J Radiat Oncol Biol Phys 2006;66:483-491 https://doi.org/10.1016/j.ijrobp.2006.05.008
  11. Seibert RM, Ramsey CR, Hines JW, et al. A model for predicting lung cancer response to therapy. Int J Radiat Oncol Biol Phys 2007;67:601-609 https://doi.org/10.1016/j.ijrobp.2006.09.051
  12. Wu KL, Jiang GL, Liao Y, et al. Three-dimensional conformal radiation therapy for non-small-cell lung cancer: a phase I/II dose escalation clinical trial. Int J Radiat Oncol Biol Phys 2003;57:2336-1344
  13. Hope AJ, Linsay PE, Naqa IE, et al. Modeling radiation pneumonitis risk with clinical, dosimetric and spatial parameters. Int J Radiat Oncol Biol Phys 2006;65:112-124 https://doi.org/10.1016/j.ijrobp.2005.11.046
  14. Wagner H Jr. Non-small-cell lung cancer. In: Gunderson LL, Tepper JE. Clinical Radiation Oncology. 2nd ed. Churchhill: Livingstone. 2007:911
  15. Travis EL, Komaki R. Treatment-related lung cancer. In: Pass HI, Carbone DP, Minna JD, Johnson DH, Turrisi AT III. Lung Cancer. Principles and Practice. 3rd ed. Philadelphia, Baltimore, NY, London, Hong Kong, Sydney, Tokyo: Lippincott Williams & Wilkins. 2005:545-567
  16. Beckmann GK, Kolbl O, Krieger T, Wulf J, Flentje MP. How can we further improve radiotherapy for stage-III non-small-cell lung cancer? Lung cancer 2004;45S:125-132
  17. Rengan R, Rosenzweig KE, Venkatraman E, et al. Improved local control with higher doses of radiation in large-volume stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;60:741-747 https://doi.org/10.1016/j.ijrobp.2004.04.013
  18. Belderbos JSA, Heemsbergen WD, Jaeger KD, Baas P, Lebesque JV. Final results of a phase I/II dose escalation trial in non-small-cell lung cancer using three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:126-134 https://doi.org/10.1016/j.ijrobp.2006.04.034
  19. Liu HH, Wang CW, Dong L, et al. Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;58:1268-1279 https://doi.org/10.1016/j.ijrobp.2003.09.085
  20. Murshed H, Liu HH, Liao Z, et al. Dose and volume reduction for normal lung using intensity-modulated radiotherpay for advanced-stage non-small-cell lung cancer. Int J Radiat Onol Biol Phys 2004;58:1258-1267 https://doi.org/10.1016/j.ijrobp.2003.09.086
  21. Allen AM, Czerminska M, Janne PA, et al. Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma. Int J Radiat Oncol Biol Phys 2006;66:1595-1596
  22. Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 2006;66:1281-1293 https://doi.org/10.1016/j.ijrobp.2006.08.058
  23. Schallenkamp JM, Miller RC, Brinkmann DH, Foote T, Garces YI. Incidence of radiation pneumonitis after thoracic irradiation: dose-volume correlates. Int J Radiat Oncol Biol Phys 2007;67:410-416 https://doi.org/10.1016/j.ijrobp.2006.09.030
  24. Bradley JD, Hope A, Naqa IE, et al. A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys 2007;69:985-992 https://doi.org/10.1016/j.ijrobp.2007.04.077
  25. Weiss E, Ramakrishnan V, Keall PJ. Is there a selection bias in radiotherapy dose-escalation protocols? Int J Radiat Oncol Biol Phys 2007;68:1359-1365 https://doi.org/10.1016/j.ijrobp.2007.02.006
  26. Baisden JM, Romney DA, Reish AG, et al. Dose as a function of lung volume and planned treatment volume in helical tomotherapy intensity-modulated radiation therapy-based stereotactic body radiation therapy for small lung tumors. Int J Radiat Oncol Biol Phys 2007;68:1229-1237 https://doi.org/10.1016/j.ijrobp.2007.03.024
  27. Rice DC, Smythe WR, Liao Z, et al. Dose-dependent pulmonary toxicity after postoperative intensity-modulated radiotherapy for malignant pleural mesothelioma. Int J Radiat Oncol Biol Phy 2007;69:350-357 https://doi.org/10.1016/j.ijrobp.2007.03.011
  28. Miles EF, Kelsey CR, Kirkpatrick JP, Marks LB. Estimating the magnitude and field-size dependence of radiotherapy-induced mortality and tumor control after postoperative radiotherapy for non-small-cell lung cancer: Calculations from clinical trials. Int J Radiat Oncol Biol Phys 2007;68:1047-1052 https://doi.org/10.1016/j.ijrobp.2007.02.028
  29. Wall RJ, Schnapp LM. Radiation pneumonitis. Respiratory Care 2006;51:1255-1260
  30. Sekine I, Sumi M, Ito Y, et al. Retrospective analysis of steroid therapy for radiation-induced lung injury in lung cancer patients. Radiother Oncol 2006;80:93-97 https://doi.org/10.1016/j.radonc.2006.06.007
  31. Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 2005;63:5-24 https://doi.org/10.1016/j.ijrobp.2005.03.047