Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.5
s.311
/
pp.12-21
/
2006
In this paper, we propose a technique for extracting attentive objects in images using feature maps, regardless of the complexity of images and the position of objects. The proposed method uses feature maps with edge and color information in order to extract attentive objects. We also propose a reference map which is created by integrating feature maps. In order to create a reference map, feature maps which represent visually attentive regions in images are constructed. Three feature maps including edge map, CbCr map and H map are utilized. These maps contain the information about boundary regions by the difference of intensity or colors. Then the combination map which represents the meaningful boundary is created by integrating the reference map and feature maps. Since the combination map simply represents the boundary of objects we extract the candidate object regions including meaningful boundaries from the combination map. In order to extract candidate object regions, we use the convex hull algorithm. By applying a segmentation algorithm to the area of candidate regions to separate object regions and background regions, real object regions are extracted from the candidate object regions. Experiment results show that the proposed method extracts the attentive regions and attentive objects efficiently, with 84.3% Precision rate and 81.3% recall rate.
We have mapped 1 $deg^2$ region toward a high latitude cloud MBM 40 in the J = 1 - 0 transition of $^{12}CO$ and $^{13}CO$, using the 3 mm SIS receiver on the 14 m telescope at Taeduk Radio Astronomy Observatory. We used a high resolution autocorrelator to resolve extremely narrow CO linewidths of the molecular gas. Though the linewidth of the molecular gas is very narrow (FWHP < 1 km $s^{-1}$ ), it is found that there is an evident velocity difference between the middle upper part and the lower part of the cloud. Their spectra for both of $^{12}CO$ and $^{13}CO$ show blue wings, and the position-velocity map shows clear velocity difference of 0.4 km $s^{-1}$ between two parts. The mean velocity of the cloud is 3.1 km $s^{-1}$. It is also found that the linewidths at the blueshifted region are broader than those of the rest of the cloud. We confirmed that the visual extinction is less than 3 magnitude, and the molecular gas is translucent. We discussed three mass estimates, and took a mass of 17 solar masses from CO integrated intensity using a conversion factor $2.3 {\times} 10^{20} cm^{-2} (K\;km s^{-1})^{-1}$. Spatial coincidence and close morphological similarity is found between the CO emission and dust far-infrared (FIR) emission. The ratio between the 100 f.Lm intensity and CO integrated intensity of MBM 40 is 0.7 (MJy/sr)/(K km $s^{-1}$), which is larger than those of dark clouds, but much smaller than those of GMCs. The low ratio found for MBM 40 probably results from the absence of internal heating sources, or significant nearby external heating sources.
Purpose : The present study was undertaken to evaluate the usefulness of cerebral diffusion (DWI) and perfusion MR imaging (PWI) in rabbit models with hyperacute cerebral ischemic infarction. Materials and Methods : Experimental cerebral infarction were induced by direct injection of mixture of Histoacryl glue, lipiodol, and tungsten powder into the internal cerebral artery of 6 New-Zealand white rabbits, and they underwent conventional T1 and T2 weighted MR imaging, DWI, and PWI within 1 hour after the occlusion of internal cerebral artery. The PWI scan for each rabbit was obtained at the level of lateral ventricle and 1cm cranial to the basal ganglia. By postprocessing using special imaging software, perfusion images including cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) maps were obtained. The detection of infarcted lesion were evaluated on both perfusion maps and DWI. MTT difference time were measured in the perfusion defect lesion and symmetric contralateral normal cerebral hemisphere. Results : In all rabbits, there was no abnormal signal intensity on T2WI. But on DWI, abnormal high signal intensity, suggesting cerebral infarction, were detected in all rabbits. PWI (rCBV, CBF and MTT map) also showed perfusion defect in all rabbits. In four rabbits, the calculated square of perfusion defect in MTT map is larger than that of CBF map and in two rabbits, the calculated size of perfusion defect in MTT map and CBF map is same. Any rabbits do not show larger perfusion defect on CBF map than MTT map. In comparison between CBF map and DWI, 3 rabbits show larger square of lesion on CBF map than on DWI. The others shows same square of lesion on both technique. The size of lesion shown in 6 MTT map were larger than DWI. In three cases, the size of lesion shown in CBF map is equal to DWI. But these were smaller than MTT map. The calculated square of lesion in CBF map, equal to that of DWI and smaller than MTT map was three. And in one case, the calculated square of perfusion defect in MTT map was largest, and that of DWI was smallest. Conclusion : DWI and PWI may be useful in diagnosing hyperacute cerebral ischemic infarction and in e-valuating the cerebral hemodynamics in the rabbits.
This paper is related to color image segmentation and textile texture mapping for the 2D virtual wearing system. The proposed system is characterized as virtually wearing a new textile pattern selected by user to the clothing shape section, based on its intensity difference map, segmented from a 2D clothes model image using color image segmentation technique. Regardless of color or intensity of model clothes, the proposed system is possible to virtually change the textile pattern or color with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple textile pattern combinations for individual styles or entire outfits. The proposed system can provide higher practicality and easy-to-use interface, as it makes real-time processing possible in various digital environment, and creates comparatively natural and realistic virtual wearing styles, and also makes semi-automatic processing possible to reduce the manual works to a minimum. According to the proposed system, it can motivate the creative activity of the designers with simulation results on the effect of textile pattern design on the appearance of clothes without manufacturing physical clothes and, as it can help the purchasers for decision-making with them, promote B2B or B2C e-commerce.
The Journal of Korean Institute of Communications and Information Sciences
/
v.21
no.7
/
pp.1696-1705
/
1996
The theory of stack filtering, which is a generalization of median filtering, is used to the detection of intensity edges in noisey images. The proposed approach, called the Difference of Estimates(DoE) approach, is a new formulation of a morphological scheme which has been very sensitive to impulse noise. In this approach, stack filters are applied to a noisy image to obtain local estimates of the dilated and eroded versions of the noise-free image. Thresholding the difference between these two estimates yields the binary edge map. We find that this approach yields results comparable to those obtained with the Canny operator for images with additive Gaussian noise, burt works much better when the noise is impulsive.
Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
Journal of Digital Convergence
/
v.11
no.12
/
pp.459-465
/
2013
This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.
Jin, Hyeongmin;Kim, Dong-Yun;Park, Jong Min;Kang, Hyun-Cheol;Chie, Eui Kyu;An, Hyun Joon
Progress in Medical Physics
/
v.30
no.4
/
pp.104-111
/
2019
Purpose: Online magnetic resonance-guided adaptive radiotherapy (MRgART), an emerging technique, is used to address the change in anatomical structures, such as treatment target region, during the treatment period. However, the electron density map used for dose calculation differs from that for daily treatment, owing to the variation in organ location and, notably, air pockets. In this study, we evaluate the dosimetric effect of electron density override on air pockets during online ART for pancreatic cancer cases. Methods: Five pancreatic cancer patients, who were treated with MRgART at the Seoul National University Hospital, were enrolled in the study. Intensity modulated radiation therapy plans were generated for each patient with 60Co beams on a ViewrayTM system, with a 45 Gy prescription dose for stereotactic body radiation therapy. During the treatment, the electron density map was modified based on the daily MR image. We recalculated the dose distribution on the plan, and the dosimetric parameters were obtained from the dose volume histograms of the planning target volume (PTV) and organs at risk. Results: The average dose difference in the PTV was 0.86Gy, and the observed difference at the maximum dose was up to 2.07 Gy. The variation in air pockets during treatment resulted in an under- or overdose in the PTV. Conclusions: We recommend the re-contouring of the air pockets to deliver an accurate radiation dose to the target in MRgART, even though it is a time-consuming method.
In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.
Proceedings of the National Institute of Ecology of the Republic of Korea
/
v.2
no.1
/
pp.1-14
/
2021
The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.
Mass-customization is fast growing a segment of the apparel market. 2D Virtual wearing system is one of visual support tools that make possible to sell apparel before producing and reduce the time and costs related to product development and manufacturing in the world of apparel mass-customization. This paper is related to fabric color mapping method for 2D image-based virtual wearing system. In proposed method, clothing shape section of interest is segmented from a clothes model image using a region growing method, and then mapping a new fabric color selected by user into it based on its intensity difference map is processed. With the proposed method in 2D virtual wearing system, regardless of color or intensity of model clothes, it is possible to virtually change the fabric color with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple fabric color combinations for individual styles or entire outfits.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.