• Title/Summary/Keyword: Intensity Modulated Radiotherapy

Search Result 166, Processing Time 0.021 seconds

A Patterns of Care Study of the Various Radiation Therapies for Prostate Cancer among Korean Radiation Oncologists in 2006 (Patterns of Care Study를 위한 2006년 한국 방사선종양학과 전문의들의 전립선암 방사선치료원칙 조사연구)

  • Kim, Jin-Hee;Kim, Jae-Sung;Ha, Sung-Whan;Shin, Seong-Soo;Park, Won;Cho, Jae-Ho;Suh, Chang-Ok;Oh, Young-Taek;Shin, Sei-Won;Kim, Jae-Chul;Jang, Ji-Young;Nam, Taek-Keun;Choi, Young-Min;Kim, Il-Han
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2008
  • Purpose: To conduct a nationwide academic hospital patterns of the practice status and principles of radiotherapy for prostate cancer. The survey will help develop the framework of a database of Korean in Patterns of Case Study. Materials and Methods: A questionnaire about radiation treatment status and principles was sent to radiation oncologists in charge of prostate cancer treatment at thirteen academic hospitals in Korea. The data was analyzed to find treatment principles among the radiation oncologists when treating prostate cancer. Results: The number of patients with prostate cancer and treated with radiation ranged from 60 to 150 per academic hospital in Seoul City and 10 to 15 outside of Seoul City in 2006. The primary diagnostic methods of prostate cancer included the ultrasound guided biopsy on 6 to 12 prostate sites(mean=9), followed by magnetic resonance imaging and a whole body bone scan. Internal and external immobilizations were used in 61.5% and 76.9%, respectively, with diverse radiation targets. Whole pelvis radiation therapy(dose ranging from 45.0 to 50.4 Gy) was performed in 76.9%, followed by the irradiation of seminal vesicles($54.0{\sim}73.8$ Gy) in 92.3%. The definitive radiotherapy doses were increased as a function of risk group, but the range of radiation doses was wide(60.0 to 78.5 Gy). Intensity modulated radiation therapy using doses greater than 70 Gy, were performed in 53.8% of academic hospitals. In addition, the simultaneous intra-factional boost(SIB) technique was used in three hospitals; however, the target volume and radiation dose were diverse. Radiation therapy to biochemical recurrence after a radical prostatectomy was performed in 84.6%; however, the radiation dose was variable and the radiation field ranged from whole pelvis to prostate bed. Conclusion: The results of this study suggest that a nationwide Korean Patterns of Care Study is necessary for the recommendation of radiation therapy guidelines of prostate cancer.

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

Review on Usefulness of EPID (Electronic Portal Imaging Device) (EPID (Electronic Portal Imaging Device)의 유용성에 관한 고찰)

  • Lee, Choong Won;Park, Do Keun;Choi, A Hyun;Ahn, Jong Ho;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • Purpose: Replacing the film which used to be used for checking the set-up of the patient and dosimetry during radiation therapy, more and more EPID equipped devices are in use at present. Accordingly, this article tried to evaluated the accuracy of the position check-up and the usefulness of dosimetry during the use of an electronic portal imaging device. Materials and Methods: On 50 materials acquired with the search of Korea Society Radiotherapeutic Technology, The Korean Society for Radiation Oncology, and Pubmed using "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", and "In vivo dosimetry" as indexes, the usefulness of EPID was analyzed by classifying them as history of EPID and dosimetry, set-up verification and characteristics of EPID. Results: EPID is developed from the first generation of Liquid-filled ionization chamber, through the second generation of Camera-based fluoroscopy, and to the third generation of Amorphous-silicon EPID imaging modes can be divided into EPID mode, Cine mode and Integrated mode. When evaluating absolute dose accuracy of films and EPID, it was found that EPID showed within 1% and EDR2 film showed within 3% errors. It was confirmed that EPID is better in error measurement accuracy than film. When gamma analyzing the dose distribution of the base exposure plane which was calculated from therapy planning system, and planes calculated by EDR2 film and EPID, both film and EPID showed less than 2% of pixels which exceeded 1 at gamma values (r%>1) with in the thresholds such as 3%/3 mm and 2%/2 mm respectively. For the time needed for full course QA in IMRT to compare loads, EDR2 film recorded approximately 110 minutes, and EPID recorded approximately 55 minutes. Conclusion: EPID could easily replace conventional complicated and troublesome film and ionization chamber which used to be used for dosimetry and set-up verification, and it was proved to be very efficient and accurate dosimetry device in quality assurance of IMRT (intensity modulated radiation therapy). As cine mode imaging using EPID allows locating tumors in real-time without additional dose in lung and liver which are mobile according to movements of diaphragm and in rectal cancer patients who have unstable position, it may help to implement the most optimal radiotherapy for patients.

  • PDF

Suggestion for Comprehensive Quality Assurance of Medical Linear Accelerator in Korea (국내 선형가속기의 포괄적인 품질관리체계에 대한 제언)

  • Choi, Sang Hyoun;Park, Dong-wook;Kim, Kum Bae;Kim, Dong Wook;Lee, Jaiki;Shin, Dong Oh
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.294-303
    • /
    • 2015
  • American Association of Physicists in Medicine (AAPM) Published Task Group 40 report which includes recommendations for comprehensive quality assurance (QA) for medical linear accelerator in 1994 and TG-142 report for recommendation for QA which includes procedures such as intensity-modulated radiotherapy (IMRT), stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) in 2010. Recently, Nuclear Safety and Security Commission (NSSC) published NSSC notification no. 2015-005 which is "Technological standards for radiation safety of medical field". This notification regulate to establish guidelines for quality assurance which includes organization and job, devices, methods/frequency/tolerances and action levels for QA, and to implement quality assurance in each medical institution. For this reason, all of these facilities using medical machine for patient treatment should establish items, frequencies and tolerances for proper QA for medical treatment machine that use the techniques such as non-IMRT, IMRT and SRS/SBRT, and perform quality assurance. For domestic, however, there are lack of guidelines and reports of Korean Society of Medical Physicists (KSMP) for reference to establish systematic QA report in medical institutes. This report, therefore, suggested comprehensive quality assurance system such as the scheme of quality assurance system, which is considered for domestic conditions, based the notification of NSSC and AAPM TG-142 reports. We think that the quality assurance system suggested for medical linear accelerator also help establishing QA system for another high-precision radiation treatment machines.

Study on the Various Size Dependence of Ionization Chamber in IMRT Measurement to Improve Dose-accuracy (세기조절 방사선치료(IMRT)의 환자 정도관리에서 다양한 이온전리함 볼륨이 정확도에 미치는 영향)

  • Kim, Sun-Young;Lee, Doo-Hyun;Cho, Jung-Keun;Jung, Do-Hyeung;Kim, Ho-Sick;Choi, Gye-Sook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Purpose: IMRT quality assurance(Q.A) is consist of the absolute dosimetry using ionization chamber and relative dosimetry using the film. We have in general used 0.015 cc ionization chamber, because small size and measure the point dose. But this ionization chamber is too small to give an accurate measurement value. In this study, we have examined the degree of calculated to measured dose difference in intensity modulated radiotherapy(IMRT) based on the observed/expected ratio using various kinds of ion chambers, which were used for absolute dosimetry. Materials and Methods: we peformed the 6 cases of IMRT sliding-window method for head and neck cases. Radiation was delivered by using a Clinac 21EX unit(Varian, USA) generating a 6 MV x-ray beam, which is equipped with an integrated multileaf collimator. The dose rate for IMRT treatment is set to 300 MU/min. The ion chamber was located 5cm below the surface of phantom giving 100cm as a source-axis distance(SAD). The various types of ion chambers were used including 0.015cc(pin point type 31014, PTW. Germany), 0.125 cc(micro type 31002, PTW, Germany) and 0.6 cc(famer type 30002, PTW, Germany). The measurement point was carefully chosen to be located at low-gradient area. Results: The experimental results show that the average differences between plan value and measured value are ${\pm}0.91%$ for 0.015 cc pin point chamber, ${\pm}0.52%$ for 0.125 cc micro type chamber and ${\pm}0.76%$ for farmer type 0.6cc chamber. The 0.125 cc micro type chamber is appropriate size for dose measure in IMRT. Conclusion: IMRT Q.A is the important procedure. Based on the various types of ion chamber measurements, we have demonstrated that the dose discrepancy between calculated dose distribution and measured dose distribution for IMRT plans is dependent on the size of ion chambers. The reason is small size ionization chamber have the high signal-to-noise ratio and big size ionization chamber is not located accurate measurement point. Therefore our results suggest the 0.125 cc farmer type chamber is appropriate size for dose measure in IMRT.

  • PDF

Comparison of Treatment Plans with Multileaf Collimators of different Leaf Width (Leaf width가 다른 다엽 콜리메터에 의한 치료계획 비교)

  • Kim Joo Young;Park Sung Yong;Lee Doo Hyun;Lee Seok Ho;Kim Tae Hyun;Cho Kwan Ho
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.173-178
    • /
    • 2004
  • Purpose: To compare desimetrically intensity-modulated radiotherapy treatment plans with commercially available multileaf collimators (MLCs) of different leaf width for intracranial lesions. Materials and Methods: Twelve patients with intracranial lesions were treated with BrainLAB's micro-MLCs (mMLCs) and performed with the BrainSCAN ver. 5.2 planning software. They were replanned using the Varian 120 and 80 MLCs. These collimators have minimum leaf width of 3 mm, 5 mm and 10 mm at isocenter, respectively. PTV was $3.3~339.2\textrm{cm}^3$ and the number of beams was 3~7. These three plans were compared with respect to the uniformity and the conformity indices, doses to critical organ and normal tissue. Results: For the uniformity index of the planning target volume (PTV), there were no statistically significant differences between mMLCs and 120 MLCs (p=0.057) and between 120 MLCs and 80 MLCs (p=0.388). However, there was a difference between mMLCs and 80 MLCs (p<0.001). Maximum target dose to the PTV showed no dependency with respect to the leaf width. On the contrary, there were statistically significant differences in the conformity indices between mMLCs and 120 MLCs (p=0.003), between mMLCs and 80 MLCs (p=0.003) and between 120 MLCs and 80 MLCs (p=0.003). The volume of brainstem irradiated to $\geq$70% dose and to $\geq$50% dose was increased as the leaf width of MLCs increased. In particular, the volume of normal tissue irradiated is obviously changed for different leaf width. Volumetric increments for MLCs with leaf widths of 5 mm and 10 mm were 6.3% and 23.2% to the normal tissue irradiated to $\geq$50% dose, and 8.7% and 32.7% to the normal tissue irradiated to $\geq$70% dose, respectively, compared to the volume for MLCs with leaf width of 3 mm. Conclusions: The uniformity index and maximum target dose to the PTV showed no dependency with respect to leaf width of MLCs. However, the conformity index was improved as the leaf width decreased. For the sparing of normal brain tissue, treatment plans with MLCs of 3 mm leaf width is more effective, compared to ones with MLCs of 5 mm and 10 mm leaf widths.

  • PDF