• Title/Summary/Keyword: Intensity Approach

Search Result 724, Processing Time 0.022 seconds

Two-Dimensional Approach for Stress Intensity Factor Solution of a Semi-Elliptical Crack (2차원적 해석을 통한 반타원 결함의 응력세기계수 산출)

  • Ho, Kwang-Il;Park, In-Gyu
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 1991
  • An engineering approach for estimating the stress intensity factors of a semi-elliptical crack is presented. An approximate 2-dimensional approach solution for semi-elliptical crack is derived in terms of simple equation, through weight function technique, by reflecting on the physical character of cracks.

  • PDF

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Simulation based improved seismic fragility analysis of structures

  • Ghosh, Shyamal;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.569-581
    • /
    • 2017
  • The Monte Carlo Simulation (MCS) based seismic fragility analysis (SFA) approach allows defining more realistic relationship between failure probability and seismic intensity. However, the approach requires simulating large number of nonlinear dynamic analyses of structure for reliable estimate of fragility. It makes the approach computationally challenging. The response surface method (RSM) based metamodeling approach which replaces computationally involve complex mechanical model of a structure is found to be a viable alternative in this regard. An adaptive moving least squares method (MLSM) based RSM in the MCS framework is explored in the present study for efficient SFA of existing structures. In doing so, the repetition of seismic intensity for complete generation of fragility curve is avoided by including this as one of the predictors in the response estimate model. The proposed procedure is elucidated by considering a non-linear SDOF system and an existing reinforced concrete frame considered to be located in the Guwahati City of the Northeast region of India. The fragility results are obtained by the usual least squares based and the proposed MLSM based RSM and compared with that of obtained by the direct MCS technique to study the effectiveness of the proposed approach.

Determination of Thermal Dtress Intensity Factors for the Interface Crack under Vertical Uniform Heat Flow (수직 균일 열유동하에 있는 접합 경계면 균열의 열응력세기계수 결정)

  • 이강용;설창원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.201-208
    • /
    • 1991
  • In case that an interface crack exists in an infinite two-dimensional elastic bimaterial, the crack surface is insulated under traction free and the uniform heat flow vertical to the crack from infinite boundary is given. Temperature and stress potentials are obtained by using complex variable approach to solve Hilbert problems. The results are used to obtain thermal stress intensity factors. Only mode I thermal stress intensity factor occurs in case of the homogeneous material. Otherwise, mode I and II thermal stress intensity factor is much smaller than one of mode II.

Various types of modelling for scale parameter in Weibull intensity function for two-dimensional warranty data

  • Baik, Jai-Wook;Jo, Jin-Nam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.555-560
    • /
    • 2010
  • One-dimensional approach to two-dimensional warranty data involves modeling us- age as a function of time. Iskandar (1993) suggests a simple linear model for usage. However, simple linear form of intensity function is of limited value to model the situa-tion where the intensity varies over time. In this study Weibull intensity is considered where the scale parameter is expressed in terms of different models. We will nd out how each parameter in the model a ects the warranty cost and which model gives a bigger number of failures within the two-dimensional warranty region.

Calculation of stress intensity factor considering out-of-plane bending for a patched crack with finite thickness (유한두께를 가지는 보강된 균열평판에 대한 면외굽힘을 고려한 응력강도계수 계산)

  • Kim, Jong-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.165-169
    • /
    • 2000
  • A simple method was suggested to calculate the stress intensity factor for a one-sided patched crack with finite thickness. To consider out-of-plane bending effect resulting from the load-path eccentricity, the spring constant as a function of the through-thickness coordinate z was calculated from the stress distribution in the un-cracked plate, ${\sigma}_{yy}(y=0,\;z)$, and the displacement for the representative single strip Joint, $u_y(y=0,\;z)$. The stress Intensity factors were obtained using Rose's asymptotic solution approach and compared with the finite element results. In short crack region, two results had a little difference. However, two results were almost same in long crack region. On the other hand, the stress intensity factor using plane stress assumption was more similar to finite element result than plane strain condition.

  • PDF

An Inspection on Stress Intensity Factor of Center Crack Tip by Superposition Method (중첩법에 의한 중앙 크랙 선단의 응력확대계수에 관한 검증)

  • 한문식;조재웅;이양섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.172-181
    • /
    • 2003
  • In this study, the stress intensity factor of center crack tip is calculated by the superposition method when it is surrounded by symmetrically distributed small cracks. The values of stress intensity factors of center crack tips are compared with those of the center crack tips calculated by the superposition method. These compared errors are influenced by the locations of distributed small cracks. These errors are inspected. When small cracks overlap and approach near the center crack tip, the effect of interaction caused by these cracks becomes noticeable and these errors become larger. In case of multiple distributed small cracks except this case, the stress intensity factor of the center crack tip is easily calculated by the superposition method.

Determination of Compound Stress Intensity Factor by Superposition Method (중첩법에 의한 복합응력확대계수의 결정)

  • 조재웅;한문식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.244-250
    • /
    • 1998
  • In this study, the stress intensity factors of center crack are analyzed when it is surrounded by symmetrically distributed small cracks. The values of stress intensity factors of the center crack are greatly influenced by the locations of distributed small cracks. When small cracks overlap or approach near the tip of a center crack, the effect of interaction arisen by these cracks becomes noticeable. In case of multiple distributed small cracks, the stress intensity factor of a center crack is found to be efficiently determined by the superposition method.

  • PDF

Nature of Company Ownership, the Dual Role of CEO and Board Chair, and R & D Investment Intensity

  • Meng, La-Mei;Byun, Hae-Young
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.2
    • /
    • pp.45-60
    • /
    • 2020
  • Purpose - This study examines the impact of company ownership nature and of the dual role of CEO and board chair on R & D investment intensity, as well as the moderating effect of this dual role. Most previous research focused on the impact of the dual role of CEO and board chair on firm performance. Design/methodology/approach - This study uses A-share companies listed on the Shenzhen and Shanghai stock exchanges in China from 2008 to 2017. The univariate and the multivariate regression analysis were hired In order to analyze the data. Findings - The results show that there is a significant negative relationship between state-owned companies and R & D investment intensity. In addition, there is a significant positive relationship between the dual role and R & D investment intensity. The effect of state ownership on R & D investment intensity is more negative when CEO-board chair duality exists. This means that in case of state-owned companies, if CEO serves as the board chair, the propensity to invest in R&D is further reduced. Research implications or Originality - This is a pioneering study that considers the joint effect of state-owned companies and dual role on R & D investment intensity in the Chinese economy.

Empirical modelling approaches to modelling failures

  • Baik, Jaiwook;Jo, Jinnam
    • International Journal of Reliability and Applications
    • /
    • v.14 no.2
    • /
    • pp.107-114
    • /
    • 2013
  • Modelling of failures is an important element of reliability modelling. Empirical modelling approach suitable for complex item is explored in this paper. First step of the empirical modelling approach is to plot hazard function, density function, Weibull probability plot as well as cumulative intensity function to see which model fits best for the given data. Next step of the empirical modelling approach is select appropriate model for the data and fit the parametric model accordingly and estimate the parameters.

  • PDF