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Abstract

One-dimensional approach to two-dimensional warranty data involves modeling us-
age as a function of time. Iskandar (1993) suggests a simple linear model for usage.
However, simple linear form of intensity function is of limited value to model the situa-
tion where the intensity varies over time. In this study Weibull intensity is considered
where the scale parameter is expressed in terms of different models. We will find out
how each parameter in the model affects the warranty cost and which model gives a
bigger number of failures within the two-dimensional warranty region.

Keywords: Scale parameter, two-dimensional warranty data, warranty cost, Weibull
intensity function.

1. Introduction

A warranty is a manufacturer’s assurance to a buyer that a product or service is or shall
be as represented. It may be considered to be a contractual agreement between the buyer
and manufacturer for the sale of the product or service. In broad terms, the purpose of a
warranty is to establish liability between the two parties in the event that an item fails.

Warranty data provides useful information to assess product reliability in the field. This
can then be used to assess future warranty costs and decisions to improve the reliability
for the next generation to reduce warranty costs and customer dissatisfaction. For products
sold with two-dimensional (age and usage) warranties, warranty data poses new challenges
to assess product reliability.

Models play an important role in these evaluations and decision-making. Many different
types of models (failure model, warranty cost model, servicing model, logistics model etc)
are used and these can be found in Blischke and Murthy (1994, 1996). A more recent review
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of models that have appeared since 1990 can be found in Murthy and Djamaludin (2002,
2008).

The case of one-dimensional warranties has been a lot of attention. See Kalbfleisch et
al. (1991), Lawless and Kalbfleisch (1992), Lawless (1998) and Kalbfleisch and Lawless
(1998). In contrast, the analysis and modeling of two-dimensional warranty data has received
very little attention. See Iskandar (1993), Murthy et al. (1995), Singpurwalla and Wilson
(1998), Kim and Rao (2000) and Yang and Nachlas (2001) for two-dimensional warranty
data analysis. Optimization of cost following the expiration of warranty has been established
by Jung (2008, 2006).

Item failures are points on a plane with one axis representing age (t) and the other repre-
senting usage (x). Two different approaches have been employed to modeling item failures.
The first is to model item failures by a two-dimensional point process formulation. See Iskan-
dar (1993), Murthy et al. (1995) and Blischke and Murthy (1996, Chapter7). The second
approach involves modeling usage as a function of time. Iskandar (1993) suggests a linear
model for usage given by x(t) = rt where r is the usage rate and is modeled as a random
variable to model the varying usage rate across the consumer population. For numerical
computation, linear form of intensity function given usage rate is assumed to see the effect
of the parameters.

However, simple linear form of intensity function is of limited value to model the situation
where the intensity varies over time. In this paper, given a distribution for the usage rate
in 2-dimensional warranty data and a Weibull intensity function warranty cost expressed in
terms of the number of failures under two-dimensional warranty is sought. Weibull intensity
function is assumed where the scale parameter of the intensity function is a function of
the usage rate. In Section 2 model formulation and analysis are undertaken. In Section 3
numerical results and their interpretation are given. In the final section conclusion is drawn.

2. Model formulation and analysis

One-dimensional approach involves modeling usage as a function of time so that failures
are effectively modeled by a one-dimensional point process formulation. Iskandar (1993)
suggests a linear model for usage given by x(t) = rt where r is a random variable for usage
rate with the distribution function G(r) and is modeled to represent the varying usage across
the consumer population. According to chapter 8 of Blischke and Murthy (1994) if we let
N(t|r) be the number of failures over the interval [0, t) conditional on R = r then

P {N(t) = n} =

∫ ∞
0

P {N(t|r) = n} dG(r)

where P {N(t|r) = n} =
{∫ t

0
λW (s|r)ds

}n
exp

{
−
∫ t
0
λW (s|r)ds

}
/n! and λW (t|r) is the

intensity function of age t given usage rate r.
If we let N(W,U |r) be the number of failures under warranty conditional on R = r then

E(N(W,U)) =

∫ r0

0

ΛW (W |r)dG(r) +

∫ ∞
r0

ΛW (
U

r
|r)dG(r) where ΛW (t|r)

=

∫ t

0

λW (s|r)ds and r0 = U/W.



Various types of modelling for scale parameter in Weibull intensity function 557

A special case of linear form λ(t|r) = θ0 + θ1r + θ2Xc(t) + θ3Yc(t) is assumed in Blischke
and Murthy (1994) where Xc(t) = t and Yc(t) = rt. So the intensity function is given by
λ(t|r) = θ0 + θ1r + (θ2 + θ3r)t and ΛW (W |r) = (θ0 + θ1r)W +(θ2 + θ3r)W

2/2. Numerical
computations are given for some values of θi ’s, U and W in Blischke and Murthy (1994).

However, simple linear form of intensity function is of limited value to model the situ-
ation where the intensity varies over time. Hence, we assume Weibull intensity function
λW (t|r) = (β/α(r)) (t/α(r))

β−1
where the scale parameter α(r) can be interpreted as a

stress on warranty cost. Therefore the requirement for α(r) is that it decrease as the usage

rate r increases. Note that ΛW (t|r) = (t/α(r))
β
. Different types of model for α(r) can be

considered. These three different types of models are considered since they are frequently
used in reliability analysis: first model being still linear except it is inverse linear, second
and third being popular non-linear relationship between r and α(r). The third model can
model the feasible usage rate. In practice, given dataset with r we can determine which
model fit best among the following three models.

Model 1: α(r) = α0 + α1/r
Model 1 assumes a simple inverse linear relationship between r and α(r).
Model 2: α(r) = α0e

α1/r

Model 2 assumes an inverse exponential relationship (Arrhenius relationship) between r
and α(r).

Model 3: α(r) = α0(r0/r)
α1 with α1 > 1, where the usage rate r = a + by and y has

a Beta distribution with range [0, 1]. That is, f(y) = yν−1(1 − y)w−1/B(ν, w), 0 ≤ y ≤ 1

where B(ν, w) =
∫ 1

0
uν−1(1− u)w−1du.

Model 3 assumes an inverse power law relationship between r and α(r). Note that α(r)
can be an accelerating (when r > r0) or decelerating (when r < r0) factor on the warranty
cost.

3. Numerical results

For each of the models and a distribution for the usage rate r, E(N(W,U)) is of interest
since it determines the warranty cost. For the numerical examples in this section the unit for
usage x is 104 miles and for age t is years. It is assumed that W = 5 and U = 10. Therefore
r0 = U/W = 2. Hence, W = 5 and U = 10 corresponds to a time limit of 5 years and a
usage limit of 100,000 miles whichever comes first. Note that if r = r0 with probability 1
then the warranty expires at W . And if we set α(r0) = 2.5 then E(N(W,U)) = ΛW (W |r =
r0) = (W/α(r0))β = (5/2.5)2 = 4.

We assume α(r) to be 2.5 on the average in models 1, 2 and 3 and see the effect of α0 and
α1 on the warranty cost.

Iskandar and Murthy (1994) suggests Uniform and Gamma distributions as suitable mod-
els for G(r). In this paper, Uniform distribution is assumed for the distribution of usage
rate r for models 1 and 2; r : U(0, u) where u is taken as 2 × mean and the mean refers to
the mean usage rate of 2 (20,000 miles per year). In this case r : U(0, 4).

For Model 3 the usage rate r = a + by and y has a Beta distribution with range [0, 1].
We can take α = 1 and α = 4 so that if ν = 1, w = 3 then E(r) = 2(= a + bν/(ν + w) =
1 + 4(1/1 + 3)) and r can take values from 1 (= a) to 5 (= a + b). So we can assume that
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the usage rate is 2 for Model 3 too. Note that with model 3 we can model very heavy usages
group (as big as r = 5) as well as low usage group (as low as r = 2).

The density function for r is

f(r) =
1

4

{
1

4
(r − 1)

}ν−1 {
1−

1

4
(r − 1)

}w−1

B(ν, w)
, 1 ≤ r ≤ 5.

In general if r = a+ by with r ∼ B(ν,w) then

f(r) =
1

b

{
1

b
(r − 1)

}ν−1 {
1−

1

b
(r − 1)

}w−1

B(ν, w)
, a ≤ r ≤ a+ b.

Then E(N(W,U)) for each of the models can be expressed as follows:

E(N(W,U)) =
1

u

{∫ r0

0

(
W

α0 + α1/r
)βdr +

∫ u

r0

(
U/r

α0 + α1/r
)βdr

}
for Model 1

E(N(W,U)) =
1

u

{∫ r0

0

(
W

α0 + eα1/r
)βdr +

∫ u

r0

(
U/r

α0 + eα1/r
)βdr

}
for Model 2

E(N(W,U)) = (
W

α0 + rα1
0

)β
∫ r0

α

(rα0)βf(r)dr + (
U

α0 + rα1
0

)β
∫ a+b

α

(rα1−1)βf(r)dr

for Model 3.

In Model 1 α(r) = α0 + α1/r determines the scale parameter at some nominal usage rate
r. This is held at a value of 2.5 for the numerical example. Different combinations of α0

and α1 correspond to different design options.
Computational Results for Model 1 with α(r) = 2.5 and β = 2 are given in Table 3.1.

Note that α(r) = 2.5 gives specific combinations of α0 and α1 for an average usage rate of
r = 2. We can tell from the equation above and Table 3.1 that with small values of α0 or
α1 we observe a big number of failures. It is certain from the equation that warranty cost
increases as β increases for a given value of α(r).

Table 3.1 E(N(W,U)) for models 1, 2 and 3 with α(r) = 2.5, an average usage rate of r = 2, and β = 2

Models Model 1 Model 2 Model 3
1 and 2 a = 1 , b = 4 , ν = 1 , w = 3
α0 α1 E(N(W,U)) α1 E(N(W,U)) α0 α1 E(N(W,U))
0.5 4 2.41 3.22 2.89 2.5 0.5 11.53
1 3 2.27 1.83 2.22 2.5 1.0 11.67

1.5 2 2.24 1.02 2.10 2.5 1.5 13.17
2 1 2.35 0.45 2.24 2.5 2.0 16.49

In Model 2 α(r) = α0e
α1/r determines the scale parameter at some nominal usage rate r.

This is held at a value of 2.5 for the numerical example. Different combinations of α0 and
α1 correspond to different design options.
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Computational Results for Model 2 with α(r) = 2.5 and some values of β are given in
Table 1 too. Note that α(r) = 2.5 gives specific combinations of α0 and α1 for an average
usage rate of r = 2. As seen in Model 1, small values of α0 and α1 yield a big number of
failures. Warranty cost increases as β increases for a given value of α(r).

In Model 3 α(r) = α0(r0/r)
α1 determines the scale parameter at some nominal usage rate

r. α0 is taken as 2.5 for the numerical example. Different combinations of a, b, ν, w and α1

correspond to different design options. Note that for a big value of α1 (and β ) the warranty
cost gets big if r > r0. Computational results for Model 3 with a = 1, b = 4, ν = 1, w = 3
and with some values of α1 are given in Table 3.1. It is shown in Table 3.1 that the number
of failures increase as α1 increases.

In this section the number of failures under two-dimensional warranty region is determined
by the parameter values in the model. It is shown from the design point of view that if the
number of failures is not large then we can use the inverse linear model (Model 1) or inverse
exponential relationship (Model 2) with current levels of parameter values to model the
effect of usage rate on the warranty cost. However, if the number of failures is large then
inverse power law relationship is to be preferred.

4. Conclusions

Two-dimensional warranty data is not uncommon in today’s industry. Previously simple
linear form of intensity function has only been considered. However, in this study Weibull
intensity function has been considered where the scale parameter is expressed in terms of
3 different models: inverse linear, inverse exponential and inverse power law relationships.
In Section 3 the number of failures under two-dimensional warranty region is shown to be
determined by the parameters in the model. Given the parameter values as in Section 3
inverse linear and inverse exponential models have a smaller number of failures than the
inverse power law model.

Following warrants further study in relation to the current study.

• In this study different types of models for the scale parameter have been consid-
ered in order to incorporate the effect of usage rate. However, we may be given two-
dimensional warranty data and want to know which model best fits the data.

• In this study we have looked at 3 different types of models such as inverse linear,
inverse exponential and inverse power law relationships. But we may want to assume
some other type of models such as Eyring relationship.

• In this study Weibull intensity function has been considered. However, some other
forms of the intensity function may be of interest.
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