• Title/Summary/Keyword: Intelligent vehicles

Search Result 776, Processing Time 0.026 seconds

A Pedestrian Collision Warning System using a Fuzzy Logic (퍼지로직을 이용한 보행자 충돌 경고 시스템)

  • Kim, Yang Ho;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.440-448
    • /
    • 2015
  • A pedestrian collision warning system which makes a judgement of pedestrian's intention to help avoiding hitting accidents is proposed. This system uses the image sequences obtained from a car black box as well as vehicle's speed obtained from a GPS. It detects pedestrians, if any, based on the Histogram of Gradient method and extracts several information such as the pedestrian's relative positions, the direction of motion vectors, and distance between vehicle and pedestrian . A fuzzy logic based on these extracted information is applied to analyze the pedestrian's safety levels. When the safety level is determined to be danger, an alarm is triggered to the driver. The performance of the proposed algorithm is tested under various driving scenarios, which shows it works successfully in real-time.

Development of Vehicle Side Collision Avoidance System with Virtual Driving Environments (가상주행환경에서의 측면 충돌 방지시스템 개발)

  • Yoon, Moon Young;Choi, Jung Kwang;Jung, Jae Eup;Boo, Kwang Seok;Kim, Heung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.164-170
    • /
    • 2013
  • The latest vehicle yields a superior safety and reduction of driving burden by monitoring the driving state of vehicle and its environment with various sensors. To detect other vehicles and objects of the rear left and right-side blind spot area of driver, provide the information about a existence of objects inside the blind spot, and give a signal to avoid collision, this study proposes the intelligent outside rear-view mirror system. This study proposes SILS system with PreScan and Matlab/Simulink to verify practical applicability of developed BSDS. PreScan yields realistic driving environments and road conditions and vehicle model dynamics and collision warning is controlled by Matlab/Simulink.

A Study on Lane Sensing System Using Stereo Vision Sensors (스테레오 비전센서를 이용한 차선감지 시스템 연구)

  • Huh, Kun-Soo;Park, Jae-Sik;Rhee, Kwang-Woon;Park, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.230-237
    • /
    • 2004
  • Lane Sensing techniques based on vision sensors are regarded promising because they require little infrastructure on the highway except clear lane markers. However, they require more intelligent processing algorithms in vehicles to generate the previewed roadway from the vision images. In this paper, a lane sensing algorithm using vision sensors is developed to improve the sensing robustness. The parallel stereo-camera is utilized to regenerate the 3-dimensional road geometry. The lane geometry models are derived such that their parameters represent the road curvature, lateral offset and heading angle, respectively. The parameters of the lane geometry models are estimated by the Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from the image plane to the global coordinate considers roll and pitch motions of a vehicle so that the mapping error is minimized during acceleration, braking or steering. The proposed sensing system has been built and implemented on a 1/10-scale model car.

A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW® (LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구)

  • Kang, Seok-Jeong;Chung, Won-Jee;Park, Seung-Kyu;Noe, Sung Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.

Suppressio of mutual interference among vehicular radars by ON-OFF control of pulses (다중차량의 자동 주행 시의 레이터 상호간섭 억제)

  • 최병철;김용철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.62-70
    • /
    • 2000
  • Intelligent vehicles are equipped with radar sensors for collision avoidance. We present a method of suppressing mutual interference among pulse-type radars, where all the radars are standardized. We developed a method of separating the true self-reflection from the false one by controlling the pulse emission of a radar in anorhogonal ON, OFF pattern. Interference signal identified in OFF-intervals is recorded to indicate the positions of the expected ghosts in ON-intervals. PFA and PM are derived for a radar system with I-Q demodulation scheme, where Gaussian noise alone is Rayleigh-distributed and Gaussian noise plus reflected radar pulse are Rician-distributed. The value of the threshold adaptively updated in order to prevent the deterioration of PM. In the experimental result, PFA decreases by an order of 10,000, when compared with the conventional M of N majority voting method.

  • PDF

Development of the VR Simulation System for the Dynamic Characteristics of the Adaptive Cruise Controlled Vehicle (ACC 차량의 동특성 해석을 위한 VR 시뮬레이션 시스템 개발)

  • Kwon, Seong-Jin;Jang, Suk;Yoon, Kyoung-Han;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.163-172
    • /
    • 2004
  • Nowadays, to analyze the dynamic characteristics of the automotive driving system, the computer simulation linked up with VR(Virtual Reality) technology is treated as the useful method with the improvement of computing ability. In this paper, the VR simulation system has been developed to investigate the driving characteristics of the ASV(Advanced Safety Vehicle) equipped with an ACC(Adaptive Cruise Control) system. For the purpose, VR environment which generates 3D graphic and sound information of the vehicle, the road, the facilities, and the terrain has been organized for the driving reality. Mathematical models of vehicle dynamic analysis including the ACC model have been constructed for computer simulation. The ACC modulates the throttle and brake functions to regulate the vehicle speed so that vehicles could keep proper spacing. Also, the real-time simulation algorithm synchronizes vehicle dynamic simulation with the graphic rendering. With the developed VR simulation system, simple scenarios are applied to analyze the dynamic characteristics. It is shown that the VR simulation system could be useful to evaluate the adaptive cruise controlled vehicle on various driving conditions.

Implementation of Node Mapping-based FlexRay-CAN Gateway for In-vehicle Networking System (차량 네트워크 시스템을 위한 노드 매핑 기반 FlexRay-CAN 게이트웨이 구현)

  • Bae, Yong-Gyung;Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2011
  • As vehicles become more intelligent, in-vehicle networking (IVN) systems such as controller area network (CAN) or FlexRay are essential for convenience and safety of drivers. To expand the applicability of IVN systems, attention is currently being focused on the communication between heterogeneous networks such as body networking and chassis networking systems. A gateway based on message mapping method was developed to interconnect FlexRay and CAN networks. However, this type of gateways has the following shortcomings. First, when a message ID was changed, the gateway must be reloaded with a new mapping table reflecting the change. Second, if the number of messages to be transferred between two networks increase, software complexity of gateway increases very rapidly. In order to overcome these disadvantages, this paper presents FlexRay-CAN gateway based on node mapping method. More specifically, this paper presents a node mapping based FlexRay-CAN gateway operation algorithm along with the experimental evaluation for ID change.

A Study on the Design of Intelligent Cruise Controller (지능 직선주행 제어기 설계에 관한 연구)

  • Rhee, Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.31-35
    • /
    • 2000
  • An nonlinear observer-based longitudinal control law for vehicles is presented in this paper. It is assumed that for vehicle i knows only the distance between vehicle i and the preceding vehicle, i-1. An nonlinear state observer for vehicle I is developed to estimate the velocity and acceleration of the preceding vehicle, i-1. The communication of the position, velocity, and acceleration information is not used in the proposed method. It will be shown by mathematical analysis that the longitudinal control of vehicle can be implemented without an communication of the informations. It will be proven that the observation errors of the nonlinear states converge to zero asymptotically. To show the effectiveness of the proposed method, the simulation results are presented for the longitudinal control of the vehicle.

  • PDF

Fabrication and Experiment of Ultrasonic Sensor Integrated Motion Recognition Device for Vehicle Manipulation (초음파 센서를 이용한 모션 인식 차량 통합 제어 장치의 제작 및 실험)

  • Na, Yeongmin;Park, Jongkyu;Lee, Hyunseok;Kang, Taehun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • Worldwide, studies on intelligent vehicles for the convenience of drivers have been actively conducted as the number of cars has increased. However, vehicle convenience enabled by buttons lowers the concentration on driving and hence poses as a huge threat to the safety of the driver. The use of one of the convenient features, impaired driving auxiliary equipment, is limited because of its complex usage, and this device also hinders the front view of the driver. This paper proposes a vehicle-control device for controlling the convenient features as well as changes in speed and direction using gestures and motions of the driver. This device consists of an ultrasonic sensor for recognizing movement, an arduino for accepting signal control functions and servo and DC motors apply to various vehicle parts. Firstly, the vehicle-control device was designed using a 3D CAD program known as Solid-works based on the size of the steering wheel. Then, through simulations, a suitable length for minimizing the absorbent between ultrasonic sensors was confirmed using a program known as COMSOL Multiphysics. Finally, simulation results were verified through experiments, and the optimal size of the device was identified through the number of errors.