• Title/Summary/Keyword: Intelligent transport systems

Search Result 2,186, Processing Time 0.022 seconds

A Study on Factors Influencing the Severity of Autonomous Vehicle Accidents: Combining Accident Data and Transportation Infrastructure Information (자율주행차 사고심각도의 영향요인 분석에 관한 연구: 사고데이터와 교통인프라 정보를 결합하여)

  • Changhun Kim;Junghwa Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.200-215
    • /
    • 2023
  • With the rapid advance of autonomous driving technology, the related vehicle market is experiencing explosive growth, and it is anticipated that the era of fully autonomous vehicles will arrive in the near future. However, along with the development of autonomous driving technology, questions regarding its safety and reliability continue to be raised. Concerns among technology adopters are increasing due to media reports of accidents involving autonomous vehicles. To promote the improvement of the safety of autonomous vehicles, it is essential to analyze previous accident cases and identify their causes. Therefore, in this study, we aimed to analyze the factors influencing the severity of autonomous vehicle accidents using previous accident cases and related data. The data used for this research primarily comprised autonomous vehicle accident reports collected and distributed by the California Department of Motor Vehicles (CA DMV). Spatial information on accident locations and additional traffic data were also collected and utilized. Given that the primary data used in this study were accident reports, a Poisson regression analysis was conducted to model the expected number of accidents. The research results indicated that the severity of autonomous vehicle accidents increases in areas with low lighting, the presence of bicycle or bus-exclusive lanes, and a history of pedestrian and bicycle accidents. These findings are expected to serve as foundational data for the development of algorithms to enhance the safety of autonomous vehicles and promote the installation of related transportation infrastructure.

Development of Korea eCall System and Effects Analysis through Integrated Demonstration (한국형 eCall 시스템 개발 및 통합실증을 통한 기대효과 분석)

  • Sangheon Kim;Youngsung Cho;Sunwoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.61-81
    • /
    • 2024
  • eCall system assists traffic accident victims by connecting emergency rescue institutions with accurate accident information, helping them to identify the on-site situation in the event of a traffic accident. The purpose of this paper is to develop a Korean eCall system that reflects the requirements of domestic emergency rescue institutions and to analyze the expected effects through an integrated demonstration. The results of an integrated demonstration indicated that the communication success rate between the eCall IVS and the call center was 99.25%, and the average location information error was 1.2 m. In particular, it has been confirmed that the average location information error is less than 21.6 meters, as assessed by the Korea Communications Commission when evaluating the accuracy of domestic emergency rescue location information. When the eCall system was introduced, it was confirmed that the time from traffic accidents to hospital arrival could be shortened by 3 m 38 s for highways and 1 m 22 s for general roads. By it to traffic deaths from 2005 to 2022, it was analyzed that the number of fatalities decreased by 82,662, resulting in a reduction of approximately social costs.

A Framework of Test Scenario Development for Issuance of Conditional Driver's Licenses for Elderly Drivers (고령 운전자 조건부 운전면허 발급을 위한 평가 시나리오 개발 프레임워크)

  • Sangsu Kim;Younshik Chung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.134-145
    • /
    • 2024
  • The purpose of this study was to propose a framework for developing test scenarios for issuance of conditional driver's licenses. The framework was composed of five stages. Initially, we reviewed the literature on traffic crash characteristics in terms of accident frequency and severity regarding the main factors of crashes caused by older drivers. In the second stage, the characteristics of crashes attributed to non-elderly, early elderly, and late elderly drivers were analyzed using data obtained from the Traffic Accident Analysis System (TAAS), and crash types for elderly drivers were derived. In the third stage, black box videos of high-risk crash types were analyzed to derive crash stories that described the circumstances in which crashes occurred. In the fourth step, crash situations were classified by rating the types of crash stories derived to develop various scenarios. Step 5 involved creating a scenario by applying the PEGASUS 5-Layer format, which has recently been used to develop test scenarios for autonomous vehicles. The results of this study are expected to be used as a basis for developing driving ability evaluation scenarios for the issuance of conditional driver's licenses.

A Study on the Digital Construction Information Structure for the Implementing Digital Twin of Road Construction Sites (도로 건설현장의 디지털트윈 구현을 위한 디지털 건설정보구조에 관한 연구)

  • Taewon Chung;Hyon Wook Ji;Jin Hoon Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.153-166
    • /
    • 2024
  • The digitalization of tasks for smart construction requires the smooth exchange of digital data among stakeholders to be effective, but there is a lack of digital data standardization and utilization methods. This paper proposes a digital construction information structure to transform information from road construction sites into digital formats. The study targets include significant tasks, such as work planning, scheduling, safety management, and quality control. The key to the construction information structure is separating construction information into objects and activities, defining unit works by combining these two types of information to ensure flexibility in representing and modifying construction information. The objects and activities have their respective hierarchical structures, which are defined flexibly to match the actual content. This structure achieves both efficiency and detail. The pilot structure was applied to highway construction projects and implemented digitally using general formats. This study enables the digitalization of road construction processes that closely resemble reality, accelerating the digital transformation of the civil engineering industry by developing a digital twin of the entire road construction lifecycle.

A Study on the Density Analysis of Multi-objects Using Drone Imaging (드론 영상을 활용한 다중객체의 밀집도 분석 연구)

  • WonSeok Jang;HyunSu Kim;JinMan Park;MiSeon Han;SeongChae Baek;JeJin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.69-78
    • /
    • 2024
  • Recently, the use of CCTV to prevent crowd accidents has been promoted, but research is needed to compensate for the spatial limitations of CCTV. In this study, pedestrian density was measured using drone footage, and based on a review of existing literature, a threshold of 6.7 people/m2 was selected as the cutoff risk level for crowd accidents. In addition, we conducted a preliminary study to determine drone parameters and found that the pedestrian recognition rate was high at a drone altitude of 20 meters and an angle of 60°. Based on a previous study, we selected a target area with a high concentration of pedestrians and measured pedestrian density, which was found to be 0.27~0.30 per m2. The study shows it is possible to measure risk levels by determining pedestrian densities in target areas using drone images. We believe drone surveillance will be utilized for crowd safety management in the near future.

A Study on the Impacts of Changes in Road Traffic Conditions and Speed Limits on Traffic Flow and Safety (도로교통 여건과 제한속도 변화에 따른 교통소통과 안전에 관한 영향 분석 연구)

  • Nam sik Moon;Eon kyo Shin;Ju hyun Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.32-49
    • /
    • 2024
  • In this paper, we analyzed the impacts of road traffic conditions and speed limit changes on traffic flow and safety. Travel speed and moving speed were set as traffic flow indicators and'moving speed-travel speed',speed deviation, large speed deviation ratio, and number of conflicts were set as safety indicators, and the impacts of changes in road traffic conditions and speed limits on these were analyzed. According to the analysis results, the speed limit had a significant impacts on the traffic indicators, but did not significantly affect the safety indicators. As a result of the statistical validity test, it was proven that the traffic flow index increases as the speed limit increases. However, although safety indicators often increase, their validity has not been proven statistically. Therefore, if the speed limit is set and operated by properly considering the traffic flow status according to various road conditions and changes in traffic volume, it can be said to match the speed at which drivers drive and improve traffic flow and safety. Therefore, it is expected that calculating the speed limit considering the traffic flow indicators and safety indicators presented in this paper and operating the speed limit according to changes in traffic volume will contribute to stabilizing the traffic flow on the road.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Determination of Service Areas and Operating Numbers for Free-floating Personal Mobility Sharing Services (First-mile과 Last-mile을 고려한 자유 주차방식(Free-floating) 개인형 이동장치 공유 서비스 권역 및 운영대수 결정)

  • Sang-Wook Han;Dong-Kyu Kim;Sedong Moon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.106-118
    • /
    • 2024
  • Interest in personal mobility has increased with the growing significance of first-mile and last-mile connectivity in smart mobility services. This study aims to propose a methodology for setting the service area of free-floating personal mobility sharing services and determining the optimal fleet size for the selected shared service area to address first-mile and last-mile challenges. We utilize population data, smart card data, and building data. Additionally, we estimate latent demand by incorporating age-specific and distance-specific utilization rates based on personal mobility device data. Along with the latent demand, we determine the service area based on locations of transit stops and buildings. We apply the proposed methodology to Yeongjong Island, Incheon. As a result, dense residential areas and popular beachside locations are designated as personal mobility sharing service areas. The fleet size for personal mobility in the dense residential service area is determined to be 1,022 units, while the fleet size for the beachside service area is set at 269 units.

Analysis of Autonomous Vehicles Risk Cases for Developing Level 4+ Autonomous Driving Test Scenarios: Focusing on Perceptual Blind (Lv 4+ 자율주행 테스트 시나리오 개발을 위한 자율주행차량 위험 사례 분석: 인지 음영을 중심으로)

  • Seung min Oh;Jae hee Choi;Ki tae Jang;Jin won Yoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.173-188
    • /
    • 2024
  • With the advancement of autonomous vehicle (AV) technology, autonomous driving on real roads has become feasible. However, there are challenges in achieving complete autonomy due to perceptual blind areas, which occur when the AV's sensory range or capabilities are limited or impaired by surrounding objects or environmental factors. This study aims to analyze AV accident patterns and safety issues of perceptual blind area that may occur in urban areas, with the goal of developing test scenarios for Level 4+ autonomous driving. It utilized AV accident data from the California Department of Motor Vehicles (DMV) to compare accident patterns and characteristics between AVs and conventional vehicles based on activation status of autonomous mode. It also categorized AV disengagement data to identify types and real-world cases of disengagements caused by perceptual blind areas. The analysis revealed that AVs exhibit different accident types due to their safe driving maneuvers, and three types of perceptual blind area scenarios were identified. The findings of this study serve as crucial foundational data for developing Level 4+ autonomous driving test scenarios, enabling the design of efficient strategies to mitigate perceptual blind areas in various scenarios. This, in turn, is expected to contribute to the effective evaluation and enhancement of AV driving safety on real roads.

Analysis-based Pedestrian Traffic Incident Analysis Based on Logistic Regression (로지스틱 회귀분석 기반 노인 보행자 교통사고 요인 분석)

  • Siwon Kim;Jeongwon Gil;Jaekyung Kwon;Jae seong Hwang;Choul ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.15-31
    • /
    • 2024
  • The characteristics of elderly traffic accidents were identified by reflecting the situation of the elderly population in Korea, which is entering an ultra-aging society, and the relationship between independent and dependent variables was analyzed by classifying traffic accidents of serious or higher and traffic accidents of minor or lower in elderly pedestrian traffic accidents using binomial variables. Data collection, processing, and variable selection were performed by acquiring data from the elderly pedestrian traffic accident analysis system (TAAS) for the past 10 years (from 13 to 22 years), and basic statistics and analysis by accident factors were performed. A total of 15 influencing variables were derived by applying the logistic regression model, and the influencing variables that have the greatest influence on the probability of a traffic accident involving severe or higher elderly pedestrians were derived. After that, statistical tests were performed to analyze the suitability of the logistic model, and a method for predicting the probability of a traffic accident according to the construction of a prediction model was presented.