• Title/Summary/Keyword: Intelligent prediction

Search Result 726, Processing Time 0.022 seconds

Time Series Modeling Pipeline for Urban Behavioral Demand Prediction under Uncertainty (COVID-19 사례를 통한 도시 내 비정상적 수요 예측을 위한 시계열 모형 파이프라인 개발 연구)

  • Minsoo Jin;Dongwoo Lee;Youngrok Kim;Hyunsoo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • As cities are becoming densely populated, previously unexpected events such as crimes, accidents, and infectious diseases are bound to affect user demands. With a time-series prediction of demand using information with uncertainty, it is impossible to derive reliable results. In particular, the COVID-19 outbreak in early 2020 caused changes in abnormal travel patterns and made it difficult to predict demand for time series. A methodology that accurately predicts demand by detecting and reflecting these changes is, therefore, required. The current study suggests a time series modeling pipeline that automatically detects and predicts abnormal events caused by COVID-19. We expect its wide application in various situations where there is a change in demand due to irregular and abnormal events.

Predicting Plant Biological Environment Using Intelligent IoT (지능형 사물인터넷을 이용한 식물 생장 환경 예측)

  • Ko, Sujeong
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1423-1431
    • /
    • 2018
  • IoT(Internet of Things) is applied to technologies such as agriculture and dairy farming, making it possible to cultivate crops easily and easily in cities.In particular, IoT technology that intelligently judge and control the growth environment of cultivated crops in the agricultural field is being developed. In this paper, we propose a method of predicting the growth environment of plants by learning the moisture supply cycle of plants using the intelligent object internet. The proposed system finds the moisture level of the soil moisture by mapping learning and finds the rules that require moisture supply based on the measured moisture level. Based on these rules, we predicted the moisture supply cycle and output it using media, so that it is convenient for users to use. In addition, in order to reduce the error of the value measured by the sensor, the information of each plant is exchanged with each other, so that the accuracy of the prediction is improved while compensating the value when there is an error. In order to evaluate the performance of the growth environment prediction system, the experiment was conducted in summer and winter and it was verified that the accuracy was high.

Privacy-preserving and Communication-efficient Convolutional Neural Network Prediction Framework in Mobile Cloud Computing

  • Bai, Yanan;Feng, Yong;Wu, Wenyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4345-4363
    • /
    • 2021
  • Deep Learning as a Service (DLaaS), utilizing the cloud-based deep neural network models to provide customer prediction services, has been widely deployed on mobile cloud computing (MCC). Such services raise privacy concerns since customers need to send private data to untrusted service providers. In this paper, we devote ourselves to building an efficient protocol to classify users' images using the convolutional neural network (CNN) model trained and held by the server, while keeping both parties' data secure. Most previous solutions commonly employ homomorphic encryption schemes based on Ring Learning with Errors (RLWE) hardness or two-party secure computation protocols to achieve it. However, they have limitations on large communication overheads and costs in MCC. To address this issue, we present LeHE4SCNN, a scalable privacy-preserving and communication-efficient framework for CNN-based DLaaS. Firstly, we design a novel low-expansion rate homomorphic encryption scheme with packing and unpacking methods (LeHE). It supports fast homomorphic operations such as vector-matrix multiplication and addition. Then we propose a secure prediction framework for CNN. It employs the LeHE scheme to compute linear layers while exploiting the data shuffling technique to perform non-linear operations. Finally, we implement and evaluate LeHE4SCNN with various CNN models on a real-world dataset. Experimental results demonstrate the effectiveness and superiority of the LeHE4SCNN framework in terms of response time, usage cost, and communication overhead compared to the state-of-the-art methods in the mobile cloud computing environment.

Forecasting Ozone Concentration with Decision Support System (의사 결정 구조에 의한 오존 농도예측)

  • 김재용;김성신;이종범;김신도;김용국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.19-22
    • /
    • 2000
  • In this paper, we present forecasting ozone concentration with decision support system. Forecasting ozone concentration with decision support system is acquired to information from human knowledge and experiment data. Fuzzy clustering method uses the acquisition and dynamic polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation and self-organization.

  • PDF

Development of Intelligent Credit Rating System using Support Vector Machines (Support Vector Machine을 이용한 지능형 신용평가시스템 개발)

  • Kim Kyoung-jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1569-1574
    • /
    • 2005
  • In this paper, I propose an intelligent credit rating system using a bankruptcy prediction model based on support vector machines (SVMs). SVMs are promising methods because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. This study examines the feasibility of applying SVM in Predicting corporate bankruptcies by comparing it with other data mining techniques. In addition. this study presents architecture and prototype of intelligeht credit rating systems based on SVM models.

A Fuzzy Time series Prediction method using modified inputs (변형된 입력을 이용한 퍼지 시계열 예측 방법)

  • 이성록;김인택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.99-104
    • /
    • 1998
  • 본 논문은 효과적인 시계열 예측을 위한 새로운 퍼지 학습방법을 제안한다. 기존의 학습방법에서는 입력 데이터를 F(y(t),y(t-1),y(t-2)..)의 형태로 주어 예측을 수행했으나 본 논문에서 제안한 방법에서는 입력 데이터를 F(y(t)-y(t-1),y(t-1)-y(t-2)..)로 설정한다. 이것은 각 입력값의 차이를 새로운 입력으로 사용함으로써 유사한 시계열 분포를 좀더 능동적인 퍼지 규칙으로 만들기 때문에 Non-stationary한 데이터뿐만 아니라 기존의 시계열 데이터 예측방법 보다 나은 결과를 나타낸다. 알고리즘의 수행능력을 살펴보기 위해 Mackey-Glass time series와 Lorenz data를 사용하였다.

  • PDF

State Recognition and Prediction of a Batch Culture Using Fuzzy Rules

  • Fukuda, Tsunenobu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1098-1101
    • /
    • 1993
  • The purpose of this work is to build a fuzzy model of a batch culture for a process control. The process is highly nonlinear system with large delay. This paper presents two methods of modeling the process behavior. One is a method of recognizing them by fuzzy rules that are contracted by the pattern analysis in consideration of skilled operators' way. The other is a method of predicting them by approximate linear models and fuzzy rules by statistic analysis.

  • PDF

Simulation Study on Self-learning Fuzzy Control of CO Concentration

  • Tanaka, Kazuo;Sano, Manabu;Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1366-1369
    • /
    • 1993
  • This paper presents a simulation study on two self-learning control systems for a fuzzy prediction model of CO (carbon monoxide) concentration:linear control and fuzzy control. The self-learning control systems are realized by using Widrow-Hoff learning rule which is a basic learning method in neural networks. Simulation results show that the learning efficiency of fuzzy controller is superior to that of linear controller.

  • PDF

A Study on Prediction of Wake Distribution by Neuro-Fuzzy System (뉴로퍼지시스템에 의한 반류분포 추정에 관한 연구)

  • Sin, Seong-Cheol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.193-196
    • /
    • 2006
  • 프로펠러 회전면에서의 반류분포는 주로 모형시험에 의해서 규명되어 왔다. 이렇게 축적된 데이터베이스를 통해 선박의 기하학적 형상정보와 반류분포 사이의 입출력관계를 모델링할 수 있다. 면 선박 초기설계시 유사선종의 설계에 도움이 된다. 본 연구에서는 이들 입출력 사이의 관계를 뉴로퍼지시스템으로 모델링하고 학습한 후 새로운 입력에 대한 출력값의 검토를 통해 그 유용성을 확인한다.

  • PDF

Prediction of Speed by Rain Intensity using Road Weather Information System and Vehicle Detection System data (도로기상정보시스템(RWIS)과 차량검지기(VDS) 자료를 이용한 강우수준별 통행속도예측)

  • Jeong, Eunbi;Oh, Cheol;Hong, Sungmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.44-55
    • /
    • 2013
  • Intelligent transportation systems allow us to have valuable opportunities for collecting reliable wide-area coverage traffic and weather data. Significant efforts have been made in many countries to apply these data. This study identifies the critical points for classifying rain intensity by analyzing the relationship between rainfall and the amount of speed reduction. Then, traffic prediction performance by rain intensity level is evaluated using relative errors. The results show that critical points are 0.4mm/5min and 0.8mm/5min for classifying rain intensity (slight, moderate, and heavy rain). The best prediction performance is observable when previous five-block speed data is used as inputs under normal weather conditions. On the other hand, previous two or three-block speed data is used as inputs under rainy weather conditions. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.