• Title/Summary/Keyword: Intelligent machining system

Search Result 65, Processing Time 0.022 seconds

Dectection of tool breakage using multi-sensing system (복합계측시스템을 이용한 공구이상검출)

  • Lee, J.J.;Park, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.95-103
    • /
    • 1993
  • In the manufacturing field, some traditional manufacturing and machining methods become weakened the productivity, the external competitive power, and accuracies of the products. In these point of view, the unmanned and intelligent manufacturing systems are proposed by some manufacturing companies. The real-time monitoring technology of the cutting tool conditions i.e. tool wear, tool breakage, crack, and chipping anre necessarily reauired to realize those system, especially. In this study, we constructed the multi- sensing system using the acceleration sensor, the current sensor, and the loadmeter of a machine tool. Also, we analyzed the nose breakage, the massive signal, and some monitoring features by means of the developed system.

  • PDF

Development of In process Condition Monitoring System on Turning Process using Artificial Neural Network. (신경회로망 모델을 이용한 선삭 공정의 실시간 이상진단 시스템의 개발)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.14-21
    • /
    • 1998
  • The in-process detection of the state of cutting tool is one of the most important technical problem in Intelligent Machining System. This paper presents a method of detecting the state of cutting tool in turning process, by using Artificial Neural Network. In order to sense the state of cutting tool. the sensor fusion of an acoustic emission sensor and a force sensor is applied in this paper. It is shown that AErms and three directional dynamic mean cutting forces are sensitive to the tool wear. Therefore the six pattern features that is, the four sensory signal features and two cutting conditions are selected for the monitoring system with Artificial Neural Network. The proposed monitoring system shows a good recogniton rate for the different cutting conditions.

  • PDF

Numerical Analysis and Experiment of Environmental Control Cell for Ultra-nano Precision Machine (초정밀 가공기를 위한 환경 제어용 셀에 관한 실험 및 해석적 연구)

  • Oh, S.J.;Kim, C.S.;Cho, J.H.;Kim, D.Y.;Seo, T.B.;Ro, S.K.;Park, J.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.824-830
    • /
    • 2013
  • In ultra-precision machining, the inside temperature should be controlled precisely. The important factors are environmental conditions (outside temperature, humidity) and temperature conditions (cutting heat, spindle heat). Thus, in this study, an environmental control cell for the ultra-precision machine that could control the inside temperature and minimize effects of the surrounding environment to achieve a thermal deformation of less than 400nm of a specimen was designed and verified through C.F.D. Further, a method that could control the temperature precisely by using a blower, heat exchanger and heater was evaluated. As a result, this study established a C.F.D technic for the environmental control cell, and the specimen temperature was controlled to be within $17.465{\pm}0.055^{\circ}C$.

Estimation of 2D Position and Flatness Errors for a Planar XY Stage Based on Measured Guideway Profiles

  • Hwang, Joo-Ho;Park, Chun-Hong;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.64-69
    • /
    • 2007
  • Aerostatic planar XY stages are frequently used as the main frames of precision positioning systems. The machining and assembly process of the rails and bed of the stage is one of first processes performed when the system is built. When the system is complete, the 2D position, motion, and stage flatness errors are measured in tests. If the stage errors exceed the application requirements, the stage must be remachined and the assembly process must be repeated. This is difficult and time-consuming work. In this paper, a method for estimating the errors of a planar XY stage is proposed that can be applied when the rails and bed of the stage are evaluated. Profile measurements, estimates of the motion error, and 2D position estimation models were considered. A comparison of experimental results and our estimates indicated that the estimated errors were within $1{\mu}m$ of their true values. Thus, the proposed estimation method for 2D position and flatness errors of an aerostatic planar XY stage is expected to be a useful tool during the assembly process of guideways.

Method and Application of Reliability Evaluation for Core Units of Machine Tools (공작기계 핵심 Unit의 신뢰성 평가 기법 및 활용에 관한 연구)

  • 이승우;송준엽;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-46
    • /
    • 1997
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high sped and intelligent have been developing for betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and designed and manufactured reliability test-bed to evaluate reliability. In addition we acquired reliability data using test-bed system and made database to handle reliability data. And also we not only use reliability data by analyzing reliability, but also apply design review method using analyzing critical units of machinery system. Form this study, we will expect to guide and increase the reliability engineering in developing and processing phase of high quality product.

  • PDF

Intelligent Diagnosis of Grinding State Using AE and Power Signals (음향방출과 동력 신호에 의한 인공지능형 연삭상태 진단)

  • Kwak, J.S.;Ha, M.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • 연삭가공은 나노스케일(Nano-scale)의 미소한 입자 절삭날을 이용한 가공으로, 공작물의 표면을 경면(Mirror surface)으로 가공할 수 있어 제품의 최종 마무리공정으로 사용되어 왔다. 그러나 연삭공정에 있어서는 공구(연삭숫돌)의 수명이 다하거나 가공계(Machining system)가 불안정해지면 채터진동과 연삭버닝 등의 현상이 발생하여 가공물의 표면품위를 저하시키는 요인으로 작용하고 있다. 따라서 본 연구는 원통플른지 연삭공정을 대상으로 공작물에서 발생하는 음향방출 신호와 연삭기 주축 모터의 동력 신호를 연삭가공 중에 검출하고, 이를 신경회로망에 적용하여 연삭가공 상태를 진단하는 시스템을 구축하고, 그 성능을 평가하였다.

  • PDF

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

Reliability Evaluation System for Advanced Mother Machine (공작기계의 신뢰성 평가 시스템)

  • 강재훈;이승우;송준엽;박화영;황주호;이현용;이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.991-994
    • /
    • 2000
  • Recently, reliability engineering is regarded as the major field for aerospace and electronics, semiconductor related industry to improve safety and life cycle. And advanced manufacturing systems with high speed and intelligent have been developed for the betterment of machining ability In this case, reliability prediction has also important roll from design procedure to manufacturing and assembly process. Accordingly in this study, reliability evaluation system has been developed for prevention trouble. quality and life cycle improvement extremely for advanced mother machinary.

  • PDF

Motion Characteristic Evaluation of Sliding Cover for High Speed Type Machine (Sliding cover의 고속 운동 특성 평가)

  • 강재훈;송준엽;박화영;이승우;황주호;이현용;이찬홍;이후상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.446-449
    • /
    • 2002
  • Recently, advanced manufacturing system with high speed and intelligent have been developed for the betterment of machining ability. In this case, reliability prediction work with motion characteristic evaluation of sliding cover has also important roll from design procedure to manufacturing and assembly process. Accordingly in this study, H/W test -bed system for reliability evaluation of sliding cover has been developed to obtain proper reference data for design of new model, and also prevention trouble, quality and life cycle improvement extremely for advanced mother machinary.

  • PDF

Development of Process Planning Expert System for Machining of Injection Mold Part (사출금형부품 가공을 위한 공정계획 전문가시스템의 개발 사례)

  • 조규갑;오정수;임주택;노형민
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.1
    • /
    • pp.27-44
    • /
    • 1996
  • 컴퓨터통합생산 시스템의 실현을 위한 중요한 분야의 하나의 부품설계도면으로부터 최종제품을 생산 하는데 필요한 공정계획의 자동화, 즉 컴퓨터지원 자동공정계획(Computer Aided Process Planning ; CAPP) 시스템 기술의 개발이다. 국내외적으로 금형가공 부품을 대상으로 한 CAPP 시스템의 개발은 비교적 저조하므로, 본 연구에서는 사출금형 부품을 대상으로 하여 실용성이 있는 공정계획 전문가시스템 개발을 목적으로 한다. 본 연구에서 금형 공정계획전문가의 경험적 지식을 기반으로 한 사출금형부품의 공정계획 전문가시스템인 MOLDCAPP을 개발하였다. MOLDCAPP 시스템은 도면정보로부터 형상정보를 자동적으로 인식하여 공정계획의 기능 중에서 가동공정, 가공공정 순서, 공작기계 및 절삭공구를 자동적으로 결정한다. 개발된 MOLDCAPP 시스템은 실제 사례연구를 통하여 그 타당성을 분석하였다.

  • PDF