• Title/Summary/Keyword: Intelligent future vehicle

Search Result 119, Processing Time 0.021 seconds

Development of Quantitative Methods for Evaluating Failure Safety of Level 3 Autonomous Vehicles (SAE Level 3 자율주행자동차의 고장 안전성 정량적 평가 방법 개발에 관한 연구)

  • Kim, Dooyong;Lee, Sangyeop;Lee, Hyuckkee;Choi, Inseong;Shin, Jaekon;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.91-102
    • /
    • 2019
  • Autonomous vehicles can be exposed to severe danger when failure occurs in any of its components. For this reason many countries are making efforts on the legislative issue how to objectively evaluate failure safety of an autonomous vehicle when such a vehicle is commercially available to a customer in the near future. In level-3 automation, a driver must take over the control of his vehicle when failure occurs, and the driver's controllability must be secured for escape from the imminent danger. In this paper, quantitative methods have been developed for evaluating failure safety of the level-3 autonomous vehicle, and they were validated by simulation. And also, we confirmed that the proposed evaluation method can quantitatively evaluate the failure safety.

Traffic Accidents Scenarios Based on Autonomous Vehicle Functional Safety Systems (자율주행차량 기능안전 시스템 기반 사고 시나리오 도출)

  • Heesoo Kim;Yongsik You;Hyorim Han;Min-je Cho;Tai-jin Song
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.264-283
    • /
    • 2023
  • Unlike conventional vehicle traffic accidents, autonomous vehicles traffic accidents can be caused by various factors, including technical problems, the environment, and driver interaction. With the future advances in autonomous driving technology, new issues are expected to emerge in addition to the existing accident causes, and various scenario-based approaches are needed to respond to them. This study developed autonomous vehicle traffic accident scenarios by collecting autonomous driving accident reports, CA DMV collision reports, autonomous driving mode disengagement reports, and autonomous driving actual accident videos. The scenarios were derived based on the functional safety system failure modes of ISO 26262 and attempted to reflect the various issues of autonomous driving functions. The autonomous vehicle scenarios derived through this study are expected to play an essential role in preventing and preparing for various autonomous vehicle traffic accidents in the future and improving the safety of autonomous driving technology.

Mobility-Based Clustering Algorithm for Multimedia Broadcasting over IEEE 802.11p-LTE-enabled VANET

  • Syfullah, Mohammad;Lim, Joanne Mun-Yee;Siaw, Fei Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1213-1237
    • /
    • 2019
  • Vehicular Ad-hoc Network (VANET) facilities envision future Intelligent Transporting Systems (ITSs) by providing inter-vehicle communication for metrics such as road surveillance, traffic information, and road condition. In recent years, vehicle manufacturers, researchers and academicians have devoted significant attention to vehicular communication technology because of its highly dynamic connectivity and self-organized, decentralized networking characteristics. However, due to VANET's high mobility, dynamic network topology and low communication coverage, dissemination of large data packets (e.g. multimedia content) is challenging. Clustering enhances network performance by maintaining communication link stability, sharing network resources and efficiently using bandwidth among nodes. This paper proposes a mobility-based, multi-hop clustering algorithm, (MBCA) for multimedia content broadcasting over an IEEE 802.11p-LTE-enabled hybrid VANET architecture. The OMNeT++ network simulator and a SUMO traffic generator are used to simulate a network scenario. The simulation results indicate that the proposed clustering algorithm over a hybrid VANET architecture improves the overall network stability and performance, resulting in an overall 20% increased cluster head duration, 20% increased cluster member duration, lower cluster overhead, 15% improved data packet delivery ratio and lower network delay from the referenced schemes [46], [47] and [50] during multimedia content dissemination over VANET.

Vehicle Tracking Using Fuzzy Logic (퍼지 논리를 이용한 차랑 추적)

  • 정태진;김인택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.154-157
    • /
    • 2000
  • In this paper, we propose a method for vehicle tracking systems using fuzzy logic. The standard ${\alpha}$-${\beta}$ filter estimates the future target positions using fixed ${\alpha}$,${\beta}$ coefficients. We utilize the if-then fuzzy logic to make ${\alpha}$ and ${\beta}$ coefficients vary with the position. Comparisons are made in tracking vehicles using three different schemes: the standard ${\alpha}$-${\beta}$ filter, ${\alpha}$-${\beta}$ filter using fuzzy logic, and the Kalman filter.

  • PDF

Secure Cluster Selection in Autonomous Vehicular Networks

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Vehicular networks are part of the next generation wireless and smart Intelligent Transportation Systems (ITS). In the future, autonomous vehicles will be an integral part of ITS and will provide safe and reliable traveling features to the users. The reliability and security of data transmission in vehicular networks has been a challenging task. To manage data transmission in vehicular networks, road networks are divided into clusters and a cluster head is selected to handle the data. The selection of cluster heads is a challenge as vehicles are mobile and their connectivity is dynamically changing. In this paper, a novel secure cluster head selection algorithm is proposed for secure and reliable data sharing. The idea is to use the secrecy rate of each vehicle in the cluster and adaptively select the most secure vehicle as the cluster head. Simulation results show that the proposed scheme improves the reliability and security of the transmission significantly.

Identifying Daily and Weekly Charging Profiles of Electric Vehicle Users in Korea : An Application of Sequence Analysis and Latent Class Cluster Analysis (전기차 이용자의 일단위 및 주단위 충전 프로파일 유형화 분석 : 순차패턴분석과 잠재계층분석을 중심으로)

  • Jae Hyun Lee;Seo Youn Yoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.194-210
    • /
    • 2022
  • The user-centered EV charging infrastructure construction policy the government is aiming for can increase convenience for electric vehicle users and bring new electric vehicle users into the market. This study was conducted to provide an in-depth understanding of the charging behaviors of actual electric vehicle users, which can be used as basic information for the electric vehicle charging infrastructure. Based on charging diary data collected for a week, the charging of electric vehicles was analyzed on a daily and weekly basis, and sequence analysis and latent class analysis were used. As a result, five daily charging profiles and four weekly charging profiles were identified, which are expected to contribute to revitalizing the electric vehicle market by providing key information for decision-making by potential electric vehicle users as well for establishing user-centered charging infrastructure policies in the future.

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

Development of an Intelligent Cruise Control using Path Planning based on a Geographic Information System (지리정보시스템 기반 경로계획을 이용한 지능형순항제어시스템 개발)

  • Lim, Kyung-Il;Oh, Jae-Saek;Lee, Je-Uk;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • Autonomous driving is no longer atechnology of the future since the development of autonomous vehicles has now been realized, and many technologies have already been developed for the convenience of drivers. For example, autonomous vehicles are one of the most important drive assistant systems. Among these many drive assistant systems, Cruise Control Systems are now a typical technology. This system constantly maintains a vehicle's speed and distance from a vehicle in front by using Radar or LiDAR sensors in real time. Cruise Control Systems do not only serve their original role, but also fulfill another role as a 'Driving Safety' measure as they can detect a situation that a driver did not predict and can intervene by assuming a vehicle's longitude control. However, these systems have the limitation of only focusing on driver safety. Therefore, in this paper, an Intelligent Cruise Control System that utilizes the path planning method and GIS is proposed to overcome some existing limitations.

Detecting Lane Departure Based on GIS Using DGPS (DGPS를 이용한 GIS기반의 차선 이탈 검지 연구)

  • Moon, Sang-Chan;Lee, Soon-Geul;Kim, Jae-Jun;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • This paper proposes a method utilizing Differential Global Position System (DGPS) with Real-Time Kinematic (RTK) and pre-built Geo-graphic Information System (GIS) to detect lane departure of a vehicle. The position of a vehicle measured by DGPS with RTK has 18 cm-level accuracy. The preconditioned GIS data giving accurate position information of the traffic lanes is used to set up coordinate system and to enable fast calculation of the relative position of the vehicle within the traffic lanes. This relative position can be used for safe driving by preventing the vehicle from departing lane carelessly. The proposed system can be a key component in functions such as vehicle guidance, driver alert and assistance, and the smart highway that eventually enables autonomous driving supporting system. Experimental results show the ability of the system to meet the accuracy and robustness to detect lane departure of a vehicle at high speed.

Line Segments Matching Framework for Image Based Real-Time Vehicle Localization (이미지 기반 실시간 차량 측위를 위한 선분 매칭 프레임워크)

  • Choi, Kanghyeok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.132-151
    • /
    • 2022
  • Vehicle localization is one of the core technologies for autonomous driving. Image-based localization provides location information efficiently, and various related studies have been conducted. However, the image-based localization methods using feature points or lane information has a limitation that positioning accuracy may be greatly affected by road and driving environments. In this study, we propose a line segment matching framework for accurate vehicle localization. The proposed framework consists of four steps: line segment extraction, merging, overlap area detection, and MSLD-based segment matching. The proposed framework stably performed line segment matching at a sufficient level for vehicle positioning regardless of vehicle speed, driving method, and surrounding environment.