Journal of the Korean Institute of Intelligent Systems
/
v.13
no.1
/
pp.107-113
/
2003
A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.4
/
pp.379-389
/
2000
A cellular automaton is well-known for self-organizing and dynamic behavions in the filed of artifial life. This paper addresses a new neuronic architecture called an evolvable celluar classifier which evolves with the genetic rules (chromosomes) in the non-uniform cellular automata. An evolvable cellular classifier is primarily based on cellular programming, but its mechanism is simpler becaise it utilizes only mutations for the main genetic operators and resmbles the Hopfield network. Therefore, the desirable bit-patterns could be obtained through evolutionary processes for just one individual agent, As a rusult, an evolvable hardware is derived which is applicable to clessification of bit-string information.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1996.10a
/
pp.333-336
/
1996
The sign language is a method of communication for deaf person. For sign communication, sign language and manual alphabet are used continuously. In this paper is proposed a system which recognize Korean sign language(KSL) and Korean manual alphabet(KMA) continuously. For recognizing KSL and KMA, basic elements for sign language, namely, the 14 hand directions, 23 hand postures, and 14 hand orientations are used. At first, this system recognize current motion state using speed and change of speed in motion by state automata. Using state, basic element classifiers using Fuzzy Min-Max Neural Network and Fuzzy Rule are executed. Meaning of signed gesture is selected by using basic elements which was recognized.
Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.14
no.4
/
pp.240-248
/
2014
We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.236-240
/
2000
A cellular automaton is well-known for self-organizing and dynamic behaviors in the field of artificial life. This paper addresses a new neuronic architecture called an evolvable cellular classifier which evolves with the genetic rules (chromosomes) in the non-uniform cellular automata. An evolvable cellular classifier is primarily based on cellular programing, but its mechanism is simpler because it utilizes only mutations for the main genetic operators and resembles the Hopfield network. Therefore, the desirable hi t-patterns could be obtained through evolutionary processes for just one individual agent. As a result, an evolvable hardware is derived which is applicable to classification of bit-string information.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.6
no.4
/
pp.331-334
/
2006
Original Support Vsctor Machines (SVMs) by Vapnik were used for binary classification problems. Some researchers have tried to extend original SVM to multiclass classification. However, their studies have only focused on classifying samples into nominal categories. This study proposes a novel multiclass SVM model in order to handle ordinal multiple classes. Our suggested model may use less classifiers but predict more accurately because it utilizes additional hidden information, the order of the classes. To validate our model, we apply it to the real-world bond rating case. In this study, we compare the results of the model to those of statistical and typical machine learning techniques, and another multi class SVM algorithm. The result shows that proposed model may improve classification performance in comparison to other typical multiclass classification algorithms.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.12
no.3
/
pp.193-197
/
2012
This paper focuses on identifying which appliance is currently operating by analyzing electrical load signature for home energy monitoring system. The identification framework is comprised of three steps. Firstly, specific appliance features, or signatures, were chosen, which are DC (Duty Cycle), SO (Slope of On-state), VO (Variance of On-state), and ZC (Zero Crossing) by reviewing observations of appliances from 13 houses for 3 days. Five appliances of electrical rice cooker, kimchi-refrigerator, PC, refrigerator, and TV were chosen for the identification with high penetration rate and total operation-time in Korea. Secondly, K-NN and Naive Bayesian classifiers, which are commonly used in many applications, are employed to estimate from which appliance the signatures are obtained. Lastly, one of candidates is selected as final identification result by majority voting. The proposed identification frame showed identification success rate of 94.23%.
Ensemble approach is applied to the detection modeling of illegal cash accommodation (ICA) that is the well-known type of fraudulent usages of credit cards in far east nations and has not been addressed in the academic literatures. The performance of fraud detection model (FDM) suffers from the imbalanced data problem, which can be remedied to some extent using an ensemble of many classifiers. It is generally accepted that ensembles of classifiers produce better accuracy than a single classifier provided there is diversity in the ensemble. Furthermore, recent researches reveal that it may be better to ensemble some selected classifiers instead of all of the classifiers at hand. For the effective detection of ICA, we adopt ensemble size reduction technique that prunes the ensemble of all classifiers using accuracy and diversity measures. The diversity in ensemble manifests itself as disagreement or ambiguity among members. Data imbalance intrinsic to FDM affects our approach for ICA detection in two ways. First, we suggest the training procedure with over-sampling methods to obtain diverse training data sets. Second, we use some variants of accuracy and diversity measures that focus on fraud class. We also dynamically calculate the diversity measure-Forward Addition and Backward Elimination. In our experiments, Neural Networks, Decision Trees and Logit Regressions are the base models as the ensemble members and the performance of homogeneous ensembles are compared with that of heterogeneous ensembles. The experimental results show that the reduced size ensemble is as accurate on average over the data-sets tested as the non-pruned version, which provides benefits in terms of its application efficiency and reduced complexity of the ensemble.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.5
/
pp.506-512
/
2000
In this paper, we propose a Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. The FCS is based on the fuzzy controller system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. In this paper, the FCS modifies input message to fuzzified message and stores those in the message list. The FCS constructs rule-base through matching between messages of message list and classifiers of fuzzy classifier list. The FCS verifies the effectiveness of classifiers using Bucket Brigade algorithm. Also the FCS employs the Genetic Algorithms to generate new rules and modifY rules when performance of the system needs to be improved. Then the FCS finds the set of the effective rules. We will verifY the effectiveness of the poposed FCS by applying it to Autonomous Mobile Robot avoiding the obstacle and reaching the goal.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.3
/
pp.289-293
/
2005
Pattern classification extracts various types of pattern information expressing objects in the real world and decides their class. The top priority of pattern classification technologies is to improve the performance of classification and, for this, many researches have tried various approaches for the last 40 years. Classification methods used in pattern classification include base classifier based on the probabilistic inference of patterns, decision tree, method based on distance function, neural network and clustering but they are not efficient in analyzing a large amount of multi-dimensional data. Thus, there are active researches on multiple classifier systems, which improve the performance of classification by combining problems using a number of mutually compensatory classifiers. The present study identifies problems in previous researches on multiple SVM classifiers, and proposes BORSE, a model that, based on 1:M policy in order to expand SVM to a multiple class classifier, regards each SVM output as a signal with non-linear pattern, trains the neural network for the pattern and combine the final results of classification performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.