• 제목/요약/키워드: Intelligent Visual Surveillance

검색결과 24건 처리시간 0.022초

지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거 (An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance)

  • 응웬탄빈;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제17권4호
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

A Fast and Precise Blob Detection

  • 빈흐타한
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.23-29
    • /
    • 2009
  • Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance. However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a precise detection is usually accomplished using morphological operations like opening and closing. Morphological operations are computationally expensive and moreover, they are difficult to run in parallel with connected component labeling routine since they need much different processing from what connected component labeling does. In this paper, we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also employed in connected component labeling so that the developed foreground mask correction method can be incorporated into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm based on the foreground mask correction method developed in this paper shows better processing speed and more precise blob detection.

  • PDF

임베디드 시스템 기반 지능형 영상 감시 시스템 구현 (Implementation of an Intelligent Visual Surveillance System Based on Embedded System)

  • 송재민;김동진;정용배;박영석;김태효
    • 융합신호처리학회논문지
    • /
    • 제13권2호
    • /
    • pp.83-90
    • /
    • 2012
  • 본 논문에서는 NIOS II 임베디드 플랫폼을 기반으로 하는 지능형 영상 감시 시스템을 구현하였다. 지금까지의 입베디 드 기반의 영상 감시 시스템들은 하드웨어의 의존도가 높아 특정한 목적에 제한되는 단점이 있었다. 이러한 한계를 개 선하기 위하여, 필자들은 그 응용의 목적에 따라 폭 넓게 적용 가능한 유연성이 높은 임베디드 플랫폼을 구현하였다. 소프트웨어 중심 프로그래밍 기법의 주요 문제점인 고속 처리를 위하여, 핵심 부분인 하드웨어 플랫폼에서 SOPC형 NIOS II 임베디드 프로세서와 영상처리 알고리즘을 소프트웨어 프로그래밍과 C2H(The Altera NIOS II C-To-Hardware(C2H) Acceleration Compiler) 컴파일러를 사용하는 하드웨어 프로그래밍을 통합하여 시스템의 성능을 향상 시켰다. 그리고 NIOS II 임베디드 프로세서 플랫폼을 중심으로 각각의 디바이스 인터페이스를 통합 관리하는 서버 시스템을 구축하고, 사용자의 접근 효율을 높이기 위해 네트워크상에서 제어하는 기능을 추가하였다.본 시스템을 영상 감시를 위한 지정된 구역에 설치하여 시험하고 그 성능을 평가하였다.

Analysis on the Possibility of Electronic Surveillance Society in the Intelligence Information age

  • Chung, Choong-Sik
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.11-17
    • /
    • 2018
  • In the smart intelligence information society, there is a possibility that the social dysfunction such as the personal information protection issue and the risk to the electronic surveillance society may be highlighted. In this paper, we refer to various categories and classify electronic surveillance into audio surveillance, visual surveillance, location surveillance, biometric information surveillance, and data surveillance. In order to respond to new electronic surveillance in the intelligent information society, it requires a change of perception that is different from that of the past. This starts with the importance of digital privacy and results in the right to self-determination of personal information. Therefore, in order to preemptively respond to the dysfunctions that may arise in the intelligent information society, it is necessary to further raise the awareness of the civil society to protect information human rights.

SOM-PAK을 이용한 지능형 핵물질 거동진단 시스템 (Intelligent Nuclear Material Diagnosis System Using SOM-PAK)

  • 송대용;이상윤;하장호;고원일;김호동
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2003년도 추계공동학술대회
    • /
    • pp.135-144
    • /
    • 2003
  • In this paper, the implementation techniques of intelligent nuclear material surveillance system based on the SOM(Self Organized Mapping) was described. Unattended continuous surveillance systems for nuclear facility result in large amounts of data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of a continuous surveillance system that integrates visual image and radiation data by the use of neural networks based on self-organized feature mapping

  • PDF

지능형 다중 화상감시시스템을 위한 움직이는 물체 추적 및 보행자/차량 인식 방법 (Tracking and Recognition of vehicle and pedestrian for intelligent multi-visual surveillance systems)

  • 이삭;조재수
    • 한국정보통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.435-442
    • /
    • 2015
  • 본 논문에서는 지능형 다중 화상감시시스템에 응용할 수 있는 움직이는 물체 추적 및 보행자/차량 인식 방법을 제안한다. 지능형 다중 화상감시시스템은 다수의 고정형 카메라와 한 대의 PTZ 카메라로 구성되며, 고정형 카메라에서 검출된 움직이는 물체들을 PTZ 카메라로 팬/틸트/줌 제어하고, 보행자인지 또는 차량인지를 자동으로 인식한다. 넓은 영역을 감시하는 고정된 카메라에서 검출된 물체는 너무 작고, 변별력이 떨어지는 문제가 있다. 이러한 문제를 극복하기 위해 PTZ 카메라를 통한 특정 움직이는 물체를 팬/틸트/줌인 제어함으로써 움직이는 물체의 변별력과 감시성능을 높일 수 있다. 제안된 시스템은 움직이는 물체를 추적하는 기능 외에 SVM 학습알고리즘을 이용하여 검출된 물체가 보행자 또는 차량인지를 판단할 수도 있다. 그리고 추적에러를 줄이기 위해 기존의 고정된 카메라와 PTZ 카메라간의 캘리브레이션 방법을 개선한다. 다양한 실험결과를 통하여 제안한 시스템의 효용성을 입증하였다.

감시 영상에서의 장면 분석을 통한 이상행위 검출 (Detection of Abnormal Behavior by Scene Analysis in Surveillance Video)

  • 배건태;어영정;곽수영;변혜란
    • 한국통신학회논문지
    • /
    • 제36권12C호
    • /
    • pp.744-752
    • /
    • 2011
  • 지능형 감시 분야에서 이상행위를 검출하는 것은 오랫동안 연구되어온 주제로 다양한 방법들이 제안되어 왔다. 그러나 많은 연구가 움직이는 객체의 개별적인 추적이 가능하다는 것을 전제로 하여 찾은 가려짐이 발생하는 실생활에 적용하는데 한계가 있다. 본 논문에서는 객체 추적이 어려운 복잡한 환경에서 장면의 주된 움직임을 분석하여 비정상적인 행위를 검출하는 방법을 제안한다. 먼저, 입력영상에서 움직임 정보를 추출하여 Visual Word와 Visual Document를 생성하고, 문서 분석 기법 중 하나인 LDA(Latent Dirichlet Allocation 알고리즘을 이용하여 장면의 주요한 움직임 정보j위치, 크기, 방향, 분포)를 추출한다. 이렇게 분석된 장면의 주요한 움직임과 입력영상에서 발생한 움직임과의 유사도를 분석하여 주요한 움직임에서 벗어나는 움직임을 비정상적인 움직임으로 간주하고 이를 이상행위로 검출하는 방법을 제안한다.

고해상도 영상의 무선 인터페이스를 갖는 스마트 보안 디스크 시스템의 설계 (Design on Smart Security Disk System with Wireless Interface of High Definition Image)

  • 김원
    • 디지털융복합연구
    • /
    • 제11권9호
    • /
    • pp.195-200
    • /
    • 2013
  • 영상 보안 시스템에서 유기물은 공공장소에서 의도적으로 버려진 물건으로서 카메라 개수가 많아지는 환경에서 지능적 시스템을 통해 자동적으로 검지되어야 한다. 이 연구에서는 이러한 유기물을 자동적으로 감지하여 그 영상 정보를 저장할 수 있는 고해상도 영상의 무선 인터페이스가 가능한 스마트 보안 디스크 시스템의 설계 방식을 다룬다. 연구에서 제안된 설계 시스템을 실제로 구현하여 고해상도 영상을 압축하지 않은 채 초당 60 프레임 전송이 가능함을 확인하였고, 이를 RAID 구성의 디스크 시스템에 저장할 수 있음을 보였다. 또한 제안된 영상 보안 소프트웨어는 PAT 성능지수에서 80%의 우수한 검지율을 보인다.

비겹침 다중 IP 카메라 기반 영상감시시스템의 객체추적 프레임워크 (Object Tracking Framework of Video Surveillance System based on Non-overlapping Multi-camera)

  • 한민호;박수완;한종욱
    • 정보보호학회논문지
    • /
    • 제21권6호
    • /
    • pp.141-152
    • /
    • 2011
  • 다양한 감시 환경에서의 보안의 중요성이 대두됨에 따라 여러 대의 카메라로 움직이는 물체를 연속적으로 추적하는 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문은 물체를 연속적으로 추적하기 위해 비겹침 다중 카메라 기반의 영삼감시시스템을 제안한다. 제안된 다중 IP 카메라 기반 객체추적 기술은 장치 간 hand-off 기술 및 프로토콜을 바탕으로 객체추적 모듈과 추적관리 모듈로 구성된다. 객체추적 모듈은 IP 카메라에서 실행되며 객체추적 정보 생성, 객체추적 정보 공유, 객체추적 정보를 이용한 객체 검색 및 모듈 내 설정 기능을 제공하고, 추적관리 모듈은 영상관제 서버에서 실행되며 객체추적 정보 실시간 수신, 객체추적 정보 검색, IP 카메라 컨트롤 기능을 제공한다. 본 논문에서 제안한 객체추적 기술은 다양한 감시 환경과 기술 방법에 의존하지 않는 범용적 프레임워크를 제안한다.

Crowd Activity Recognition using Optical Flow Orientation Distribution

  • Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.2948-2963
    • /
    • 2015
  • In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.