In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.
Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance. However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a precise detection is usually accomplished using morphological operations like opening and closing. Morphological operations are computationally expensive and moreover, they are difficult to run in parallel with connected component labeling routine since they need much different processing from what connected component labeling does. In this paper, we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also employed in connected component labeling so that the developed foreground mask correction method can be incorporated into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm based on the foreground mask correction method developed in this paper shows better processing speed and more precise blob detection.
본 논문에서는 NIOS II 임베디드 플랫폼을 기반으로 하는 지능형 영상 감시 시스템을 구현하였다. 지금까지의 입베디 드 기반의 영상 감시 시스템들은 하드웨어의 의존도가 높아 특정한 목적에 제한되는 단점이 있었다. 이러한 한계를 개 선하기 위하여, 필자들은 그 응용의 목적에 따라 폭 넓게 적용 가능한 유연성이 높은 임베디드 플랫폼을 구현하였다. 소프트웨어 중심 프로그래밍 기법의 주요 문제점인 고속 처리를 위하여, 핵심 부분인 하드웨어 플랫폼에서 SOPC형 NIOS II 임베디드 프로세서와 영상처리 알고리즘을 소프트웨어 프로그래밍과 C2H(The Altera NIOS II C-To-Hardware(C2H) Acceleration Compiler) 컴파일러를 사용하는 하드웨어 프로그래밍을 통합하여 시스템의 성능을 향상 시켰다. 그리고 NIOS II 임베디드 프로세서 플랫폼을 중심으로 각각의 디바이스 인터페이스를 통합 관리하는 서버 시스템을 구축하고, 사용자의 접근 효율을 높이기 위해 네트워크상에서 제어하는 기능을 추가하였다.본 시스템을 영상 감시를 위한 지정된 구역에 설치하여 시험하고 그 성능을 평가하였다.
In the smart intelligence information society, there is a possibility that the social dysfunction such as the personal information protection issue and the risk to the electronic surveillance society may be highlighted. In this paper, we refer to various categories and classify electronic surveillance into audio surveillance, visual surveillance, location surveillance, biometric information surveillance, and data surveillance. In order to respond to new electronic surveillance in the intelligent information society, it requires a change of perception that is different from that of the past. This starts with the importance of digital privacy and results in the right to self-determination of personal information. Therefore, in order to preemptively respond to the dysfunctions that may arise in the intelligent information society, it is necessary to further raise the awareness of the civil society to protect information human rights.
In this paper, the implementation techniques of intelligent nuclear material surveillance system based on the SOM(Self Organized Mapping) was described. Unattended continuous surveillance systems for nuclear facility result in large amounts of data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of a continuous surveillance system that integrates visual image and radiation data by the use of neural networks based on self-organized feature mapping
본 논문에서는 지능형 다중 화상감시시스템에 응용할 수 있는 움직이는 물체 추적 및 보행자/차량 인식 방법을 제안한다. 지능형 다중 화상감시시스템은 다수의 고정형 카메라와 한 대의 PTZ 카메라로 구성되며, 고정형 카메라에서 검출된 움직이는 물체들을 PTZ 카메라로 팬/틸트/줌 제어하고, 보행자인지 또는 차량인지를 자동으로 인식한다. 넓은 영역을 감시하는 고정된 카메라에서 검출된 물체는 너무 작고, 변별력이 떨어지는 문제가 있다. 이러한 문제를 극복하기 위해 PTZ 카메라를 통한 특정 움직이는 물체를 팬/틸트/줌인 제어함으로써 움직이는 물체의 변별력과 감시성능을 높일 수 있다. 제안된 시스템은 움직이는 물체를 추적하는 기능 외에 SVM 학습알고리즘을 이용하여 검출된 물체가 보행자 또는 차량인지를 판단할 수도 있다. 그리고 추적에러를 줄이기 위해 기존의 고정된 카메라와 PTZ 카메라간의 캘리브레이션 방법을 개선한다. 다양한 실험결과를 통하여 제안한 시스템의 효용성을 입증하였다.
지능형 감시 분야에서 이상행위를 검출하는 것은 오랫동안 연구되어온 주제로 다양한 방법들이 제안되어 왔다. 그러나 많은 연구가 움직이는 객체의 개별적인 추적이 가능하다는 것을 전제로 하여 찾은 가려짐이 발생하는 실생활에 적용하는데 한계가 있다. 본 논문에서는 객체 추적이 어려운 복잡한 환경에서 장면의 주된 움직임을 분석하여 비정상적인 행위를 검출하는 방법을 제안한다. 먼저, 입력영상에서 움직임 정보를 추출하여 Visual Word와 Visual Document를 생성하고, 문서 분석 기법 중 하나인 LDA(Latent Dirichlet Allocation 알고리즘을 이용하여 장면의 주요한 움직임 정보j위치, 크기, 방향, 분포)를 추출한다. 이렇게 분석된 장면의 주요한 움직임과 입력영상에서 발생한 움직임과의 유사도를 분석하여 주요한 움직임에서 벗어나는 움직임을 비정상적인 움직임으로 간주하고 이를 이상행위로 검출하는 방법을 제안한다.
영상 보안 시스템에서 유기물은 공공장소에서 의도적으로 버려진 물건으로서 카메라 개수가 많아지는 환경에서 지능적 시스템을 통해 자동적으로 검지되어야 한다. 이 연구에서는 이러한 유기물을 자동적으로 감지하여 그 영상 정보를 저장할 수 있는 고해상도 영상의 무선 인터페이스가 가능한 스마트 보안 디스크 시스템의 설계 방식을 다룬다. 연구에서 제안된 설계 시스템을 실제로 구현하여 고해상도 영상을 압축하지 않은 채 초당 60 프레임 전송이 가능함을 확인하였고, 이를 RAID 구성의 디스크 시스템에 저장할 수 있음을 보였다. 또한 제안된 영상 보안 소프트웨어는 PAT 성능지수에서 80%의 우수한 검지율을 보인다.
다양한 감시 환경에서의 보안의 중요성이 대두됨에 따라 여러 대의 카메라로 움직이는 물체를 연속적으로 추적하는 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문은 물체를 연속적으로 추적하기 위해 비겹침 다중 카메라 기반의 영삼감시시스템을 제안한다. 제안된 다중 IP 카메라 기반 객체추적 기술은 장치 간 hand-off 기술 및 프로토콜을 바탕으로 객체추적 모듈과 추적관리 모듈로 구성된다. 객체추적 모듈은 IP 카메라에서 실행되며 객체추적 정보 생성, 객체추적 정보 공유, 객체추적 정보를 이용한 객체 검색 및 모듈 내 설정 기능을 제공하고, 추적관리 모듈은 영상관제 서버에서 실행되며 객체추적 정보 실시간 수신, 객체추적 정보 검색, IP 카메라 컨트롤 기능을 제공한다. 본 논문에서 제안한 객체추적 기술은 다양한 감시 환경과 기술 방법에 의존하지 않는 범용적 프레임워크를 제안한다.
Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.2948-2963
/
2015
In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.