• Title/Summary/Keyword: Intelligent Routing Protocol

Search Result 43, Processing Time 0.025 seconds

Energy-aware Source Routing Protocol for Lifetime Maximization in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 생존시간 최대화를 위한 에너지 인지 소스 라우팅 프로토콜)

  • Choi, Hyun-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2012
  • In this paper, we propose an energy-aware source routing protocol for maximizing a network lifetime in mobile ad hoc network environments. The proposed routing protocol is based on the source routing and chooses a path that maximize the path lifetime, by considering both transmit/receive power consumption and residual battery power in the mobile nodes from the perspective of source-destination end-to-end. This paper proposes a new routing cost and designs a new routing protocol for minimizing the control packet overhead occurred during the route discovery. Simulation results show that the proposed scheme has similar performances to the conventional routing schemes in terms of the number of transmission hops, transmission rate and total energy consumption, but achieves the performance improvement of 20 percent with respect to the lifetime.

Intelligent On-demand Routing Protocol for Ad Hoc Network

  • Ye, Yongfei;Sun, Xinghua;Liu, Minghe;Mi, Jing;Yan, Ting;Ding, Lihua
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1113-1128
    • /
    • 2020
  • Ad hoc networks play an important role in mobile communications, and the performance of nodes has a significant impact on the choice of communication links. To ensure efficient and secure data forwarding and delivery, an intelligent routing protocol (IAODV) based on learning method is constructed. Five attributes of node energy, rate, credit value, computing power and transmission distance are taken as the basis of segmentation. By learning the selected samples and calculating the information gain of each attribute, the decision tree of routing node is constructed, and the rules of routing node selection are determined. IAODV algorithm realizes the adaptive evaluation and classification of network nodes, so as to determine the optimal transmission path from the source node to the destination node. The simulation results verify the feasibility, effectiveness and security of IAODV.

Multipath and Multipriority based Routing Protocol for Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 다중 경로와 다중 우선순위 기반의 라우팅 알고리즘)

  • Lee, Dong-Hoon;Gautam, Navin;Pyun, Jae-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.101-109
    • /
    • 2011
  • In this paper, we present a new routing protocol, multipath and multi-priority based routing protocol, (MMRP) for wireless multimedia sensor networks. The proposed MMRP chooses the multiple routing paths from source to the sink, then the selected paths are assigned with different priority levels depending upon the residual energy and transmission delay in the routing paths. That is, the highly prioritized I frames of the MPEG video are transmitted over the high priority routing paths, and other P and B frames are transmitted over the lower priority routing paths. The proposed MMRP protocol can be applied to time critical applications which require both lower latency and low power consumption over wireless multimedia sensor network. Simulations results of MMRP protocol show respectively an improvement of 23.48% and 23.11% in energy conservation and 81.6% and 32.01% improvement in latency as compared to protocols without and with multipath routing.

Implementation of Image Transmission System in Ad-Hoc Network Using AODV Routing Protocol (Ad hoc 네트워크에서 AODV 라우팅 프로토콜을 이용한 영상 전송 시스템 구현)

  • Lee, Sung-Hun;Lee, Hyung-Keun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.92-100
    • /
    • 2008
  • Ad-hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any centralized administration or reliable support services such as wired network and base stations. Recently, Ad-hoc networks are evolving to support multimedia contents according to expansion of ad hoc multi-hop communication system. Wireless ad-hoc network is different from the conventional wired network by frequent changes in network topology, number of routers and resources, there are a number of problems in applying conventional routing protocol to ad-hoc network. The AODV routing protocol is proposed for mobile node in ad-hoc networks. AODV protocol that provides to guarantee QoS for data transmission in ad hoc networks that link break frequently occurs. In this paper, AODV routing protocol based NDIS(Network Driver Interface Specification) is implemented. We design high performance image transmission that can operate with software(AODV) for ad-hoc networks without degradation. and verify operation of AODV routing protocol on the test bed.

  • PDF

The AODV Routing Protocol based on Location Information for Inter-Vehicle Communication (차량간 통신을 위한 위치 정보 기반의 AODV 라우팅 프로토콜)

  • Lee, Eun-Ju;Lee, Kwoun-Ig;Jwa, Jeong-Woo;Yang, Doo-Yeong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.47-54
    • /
    • 2008
  • In order to realize Intelligent Transport System (ITS) without any road facilities support, Inter-vehicle Communication (IVC) is increased attention. IVC makes it possible to exchange real-time information among vehicles without centralized infrastructure. The IVC systems use multi-hop broadcast to disseminate information. In this paper, we propose the improved AODV routing protocol based on location information. The proposed AODV routing protocol transmits Hello packet with location information to calculate the distance between nodes. Then it achieves fast link recovery. We confirm the throughput performance of the proposed AODV routing protocol compared with the AODV routing protocol using Qualnet ver.3.8 simulator.

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

An Anycast Routing Algorithm by Estimating Traffic Conditions of Multimedia Sources

  • Park, Won-Hyuck;Shin, Hye-Jin;Lee, Tae-Seung;Kim, Jung-Sun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.213-215
    • /
    • 2003
  • Multimedia has to carry data of heterogeous types. Multicast communication techniques can supply the most appropriate infrastructures to such multimedia. Of many multicast protocols, the core based tree (CBT) protocol is the most concentrative studies are conducted on. The CBT places a core router at center of the shared tree and transfers data through the tore router. However, the CBT has two problems due to centralizing all network traffics into a core router. First it can raise bottleneck effect at a core router. Second, it is possible to make an additive processing overhead when core router is distant from receivers. To cope with the problems, this paper proposes an intelligent anycast routing protocol. The anycast routing attempts to distribute the centralized traffic into plural core routers by using a knowledge-based algorithm. The anycast routing estimates the traffic characteristics of multimedia data far each multicast source, and achieves effectively the distributing that places an appropriate core router to process the incoming traffic based on the traffic information in the event that request of receivers are raised. This method prevent the additional overhead to distribute traffic because an individual core router uses the information estimated to multicast sources connected to oneself and the traffic processing statistics shared with other core neuters.

  • PDF

Distance Aware Intelligent Clustering Protocol for Wireless Sensor Networks

  • Gautam, Navin;Pyun, Jae-Young
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.122-129
    • /
    • 2010
  • Energy conservation is one of the most important issues for evaluating the performance of wireless sensor network (WSN) applications. Generally speaking, hierarchical clustering protocols such as LEACH, LEACH-C, EEEAC, and BCDCP are more efficient in energy conservation than flat routing protocols. However, these typical protocols still have drawbacks of unequal and high energy depletion in cluster heads (CHs) due to the different transmission distance from each CH to the base station (BS). In order to minimize the energy consumption and increase the network lifetime, we propose a new hierarchical routing protocol, distance aware intelligent clustering protocol (DAIC), with the key concept of dividing the network into tiers and selecting the high energy CHs at the nearest distance from the BS. We have observed that a considerable amount of energy can be conserved by selecting CHs at the nearest distance from the BS. Also, the number of CHs is computed dynamically to avoid the selection of unnecessarily large number of CHs in the network. Our simulation results showed that the proposed DAIC outperforms LEACH and LEACH-C by 63.28% and 36.27% in energy conservation respectively. The distance aware CH selection method adopted in the proposed DAIC protocol can also be adapted to other hierarchical clustering protocols for the higher energy efficiency.

QLGR: A Q-learning-based Geographic FANET Routing Algorithm Based on Multi-agent Reinforcement Learning

  • Qiu, Xiulin;Xie, Yongsheng;Wang, Yinyin;Ye, Lei;Yang, Yuwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4244-4274
    • /
    • 2021
  • The utilization of UAVs in various fields has led to the development of flying ad hoc network (FANET) technology. In a network environment with highly dynamic topology and frequent link changes, the traditional routing technology of FANET cannot satisfy the new communication demands. Traditional routing algorithm, based on geographic location, can "fall" into a routing hole. In view of this problem, we propose a geolocation routing protocol based on multi-agent reinforcement learning, which decreases the packet loss rate and routing cost of the routing protocol. The protocol views each node as an intelligent agent and evaluates the value of its neighbor nodes through the local information. In the value function, nodes consider information such as link quality, residual energy and queue length, which reduces the possibility of a routing hole. The protocol uses global rewards to enable individual nodes to collaborate in transmitting data. The performance of the protocol is experimentally analyzed for UAVs under extreme conditions such as topology changes and energy constraints. Simulation results show that our proposed QLGR-S protocol has advantages in performance parameters such as throughput, end-to-end delay, and energy consumption compared with the traditional GPSR protocol. QLGR-S provides more reliable connectivity for UAV networking technology, safeguards the communication requirements between UAVs, and further promotes the development of UAV technology.