• 제목/요약/키워드: Intelligent Recommendation

검색결과 317건 처리시간 0.023초

Performance Analysis of Group Recommendation Systems in TV Domains

  • Kim, Noo-Ri;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.45-52
    • /
    • 2015
  • Although researchers have proposed various recommendation systems, most recommendation approaches are for single users and there are only a small number of recommendation approaches for groups. However, TV programs or movies are most often viewed by groups rather than by single users. Most recommendation approaches for groups assume that single users' profiles are known and that group profiles consist of the single users' profiles. However, because it is difficult to obtain group profiles, researchers have only used synthetic or limited datasets. In this paper, we report on various group recommendation approaches to a real large-scale dataset in a TV domain, and evaluate the various group recommendation approaches. In addition, we provide some guidelines for group recommendation systems, focusing on home group users in a TV domain.

Combining Collaborative, Diversity and Content Based Filtering for Recommendation System

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 추계학술대회
    • /
    • pp.602-609
    • /
    • 2007
  • Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system

  • PDF

Intelligent recommendation method of intelligent tourism scenic spot route based on collaborative filtering

  • Liu Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1260-1272
    • /
    • 2024
  • This paper tackles the prevalent challenges faced by existing tourism route recommendation methods, including data sparsity, cold start, and low accuracy. To address these issues, a novel intelligent tourism route recommendation method based on collaborative filtering is introduced. The proposed method incorporates a series of key steps. Firstly, it calculates the interest level of users by analyzing the item attribute rating values. By leveraging this information, the method can effectively capture the preferences and interests of users. Additionally, a user attribute rating matrix is constructed by extracting implicit user behavior preferences, providing a comprehensive understanding of user preferences. Recognizing that user interests can evolve over time, a weight function is introduced to account for the possibility of interest shifting during product use. This weight function enhances the accuracy of recommendations by adapting to the changing preferences of users, improving the overall quality of the suggested tourism routes. The results demonstrate the significant advantages of the approach. Specifically, the proposed method successfully alleviates the problem of data sparsity, enhances neighbor selection, and generates tourism route recommendations that exhibit higher accuracy compared to existing methods.

연관관계를 이용한 지능형 추천 프로세스 시뮬레이션 (Intelligent Recommendation Processor Simulation using Association Relationship)

  • 한정수
    • 디지털융복합연구
    • /
    • 제11권12호
    • /
    • pp.431-438
    • /
    • 2013
  • 본 논문은 자동차 부품 점검과정에서 발생할 수 있는 고장유형별 점검해야 할 부품을 연관관계로 나타내고 이를 온톨로지로 구현한 지능형 추천 프로세서를 제안하였다. 이를 위해 10가지 고장유형과 이에 연관된 부품을 설정하였고 5가지 뷰를 가진 추천 프로세스를 설계하고 시뮬레이션 하였다. 또한, 고장유형에 따라 점검해야 할 컴포넌트들에 대한 각 부품별 연관성에 따른 가중치 값을 조절함으로써 지능형으로 확장 추천이 가능하도록 하였다.

지능형 헤드헌팅 서비스를 위한 협업 딥 러닝 기반의 중개 채용 서비스 시스템 설계 및 구현 (Design and Implementation of Agent-Recruitment Service System based on Collaborative Deep Learning for the Intelligent Head Hunting Service)

  • 이현호;이원진
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.343-350
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution in the digital revolution is taking place, various attempts have been made to provide various contents in a digital environment. In this paper, agent-recruitment service system based on collaborative deep learning is proposed for the intelligent head hunting service. The service system is improved from previous research [7] using collaborative deep learning for more reliable recommendation results. The Collaborative deep learning is a hybrid recommendation algorithm using "Recurrent Neural Network(RNN)" specialized for exponential calculation, "collaborative filtering" which is traditional recommendation filtering methods, and "KNN-Clustering" for similar user analysis. The proposed service system can expect more reliable recommendation results than previous research and showed high satisfaction in user survey for verification.

A Web Recommendation System using Grid based Support Vector Machines

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권2호
    • /
    • pp.91-95
    • /
    • 2007
  • Main goal of web recommendation system is to study how user behavior on a website can be predicted by analyzing web log data which contain the visited web pages. Many researches of the web recommendation system have been studied. To construct web recommendation system, web mining is needed. Especially, web usage analysis of web mining is a tool for recommendation model. In this paper, we propose web recommendation system using grid based support vector machines for improvement of web recommendation system. To verify the performance of our system, we make experiments using the data set from our web server.

Hybrid Intelligent Web Recommendation Systems Based on Web Data Mining and Case-Based Reasoning

  • Kim, Jin-Sung
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.366-370
    • /
    • 2003
  • In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.

감성공학을 이용한 온라인 추천 서비스 알고리즘 (On-line Recommendation Service Algorithm using Human Sensibility Ergonomics)

  • 임치환
    • 산업경영시스템학회지
    • /
    • 제27권1호
    • /
    • pp.38-46
    • /
    • 2004
  • To be successful in increasingly competitive Internet marketplace, it is essential to capture customer loyalty. This paper deals with an intelligent agent approach to incorporate customer's sensibility into an one-to-one recommendation service in on-line shopping mall. In this paper the focus of interest is on-line recommendation service algorithm for development of Human Sensibility based web agent system. The recommendation agent system composed of seven services including specialized algorithm. The on-line recommendation service algorithm use human sensibility ergonomics and on-line preference matching technologies to tailor to the customer the suggestion of goods and the description of store catalog. Customizing the system's behavior requires the parallel execution of several tasks during the interaction (e.g., identifying the customer's emotional preference and dynamically generating the pages of the store catalog). Most of the present shopping malls go through the catalog of goods, but the future shopping malls will have the form of intelligent shopping malls by applying the on-line recommendation service algorithm.

An Intelligent Recommendation Service System for Offering Halal Food (IRSH) Based on Dynamic Profiles

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.260-270
    • /
    • 2019
  • As the growth of developing Islamic countries, Muslims are into the world. The most important thing for Muslims to purchase food, ingredient, cosmetics and other products are whether they were certified as 'Halal'. With the increasing number of Muslim tourists and residents in Korea, Halal restaurants and markets are on the rise. However, the service that provides information on Halal restaurants and markets in Korea is very limited. Especially, the application of recommendation system technology is effective to provide Halal restaurant information to users efficiently. The profiling of Halal restaurant information should be preceded by design of recommendation system, and design of recommendation algorithm is most important part in designing recommendation system. In this paper, an Intelligent Recommendation Service system for offering Halal food (IRSH) based on dynamic profiles was proposed. The proposed system recommend a customized Halal restaurant, and proposed recommendation algorithm uses hybrid filtering which is combined by content-based filtering, collaborative filtering and location-based filtering. The proposed algorithm combines several filtering techniques in order to improve the accuracy of recommendation by complementing the various problems of each filtering. The experiment of performance evaluation for comparing with existed restaurant recommendation system was proceeded, and result that proposed IRSH increase recommendation accuracy using Halal contents was deducted.

Context-Aware Active Services in Ubiquitous Computing Environments

  • Moon, Ae-Kyung;Kim, Hyoung-Sun;Kim, Hyun;Lee, Soo-Won
    • ETRI Journal
    • /
    • 제29권2호
    • /
    • pp.169-178
    • /
    • 2007
  • With the advent of ubiquitous computing environments, it has become increasingly important for applications to take full advantage of contextual information, such as the user's location, to offer greater services to the user without any explicit requests. In this paper, we propose context-aware active services based on context-aware middleware for URC systems (CAMUS). The CAMUS is a middleware that provides context-aware applications with a development and execution methodology. Accordingly, the applications based on CAMUS respond in a timely fashion to contextual information. This paper presents the system architecture of CAMUS and illustrates the content recommendation and control service agents with the properties, operations, and tasks for context-aware active services. To evaluate CAMUS, we apply the proposed active services to a TV application domain. We implement and experiment with a TV content recommendation service agent, a control service agent, and TV tasks based on CAMUS. The implemented content recommendation service agent divides the user's preferences into common and specific models to apply other recommendations and applications easily, including the TV content recommendations.

  • PDF