
ETRI Journal, Volume 29, Number 2, April 2007 Aekyung Moon et al. 169

With the advent of ubiquitous computing environments,
it has become increasingly important for applications to
take full advantage of contextual information, such as the
user’s location, to offer greater services to the user without
any explicit requests. In this paper, we propose context-
aware active services based on context-aware middleware
for URC systems (CAMUS). The CAMUS is a
middleware that provides context-aware applications with
a development and execution methodology. Accordingly,
the applications based on CAMUS respond in a timely
fashion to contextual information. This paper presents the
system architecture of CAMUS and illustrates the content
recommendation and control service agents with the
properties, operations, and tasks for context-aware active
services. To evaluate CAMUS, we apply the proposed
active services to a TV application domain. We implement
and experiment with a TV content recommendation
service agent, a control service agent, and TV tasks based
on CAMUS. The implemented content recommendation
service agent divides the user’s preferences into common
and specific models to apply other recommendations and
applications easily, including the TV content
recommendations.

Keywords: Ubiquitous computing, context-aware,
ubiquitous robot companion, sensor, recommendation.

Manuscript received May 17, 2006; revised Jan. 19, 2007.
Aekyung Moon (phone: + 82 42 860 6735, email: akmoon@etri.re.kr), Hyoungsun Kim

(email: kimhs@etri.re.kr), and Hyun Kim (email: hyunkim@etri.re.kr) are with the Intelligent
Robot Research Division, ETRI, Daejeon, Korea.

Soowon Lee (email: swlee@mining@ssun.ac.kr) is with the School of Computing, Soongsil
University, Seoul, Korea.

I. Introduction

The role of context has recently gained great importance in
ubiquitous computing. Ubiquitous computing environments are
characterized by many sensors that can detect a variety of
different contexts. The context is the information that can be used
to characterize the situation of the entities that are considered
relevant to the interaction between a user and various
applications, including both the user and the applications. This
leads to the consideration that applications should take advantage
of the contextual information, such as the user’s location, to offer
greater services to the user; therefore, ubiquitous computing
environments must provide middleware support for context-
aware applications [1]. Recently, various applications of the
user’s location-based services have been required such as buddy
finding services and position tracking services [2].

Taking this into consideration, we have developed the
context-aware middleware for URC systems (CAMUS) [3].
The CAMUS provides a framework for the development and
execution of context-aware applications for a ubiquitous
robotic companion (URC) [4], such as network-based
hardware robots or software robots. To do this, CAMUS
gathers contextual information from various sensors and
delivers the appropriate contextual information to various
applications. Furthermore, CAMUS provides autonomous
service agents which are aware of the context, so that they can
adapt themselves to different situations. Among other
capabilities, the content recommendation service agent
provides a method for easily locating interesting items from a
large amount of information based on a user preference context.
The main reason is that even though the advent of the Internet
makes a large volume of content available to users, filtering the
relevant items incurs an overhead cost.

Context-Aware Active Services in
 Ubiquitous Computing Environments

 Aekyung Moon, Hyoungsun Kim, Hyun Kim, and Soowon Lee

170 Aekyung Moon et al. ETRI Journal, Volume 29, Number 2, April 2007

In this paper, we propose context-aware active services in
CAMUS. The proposed content recommendation service agent
and context-aware tasks are developed based on the service
framework and task development methodology of CAMUS. To
evaluate the proposed system, we apply the proposed active
services to the TV domain. The rapid expansion of TV
broadcasting channels has made it difficult for users to find the
TV programs they desire. Accordingly, TV users are confused
about how to find their preferred programs, as several hundred
programs are available every day. Over the past few years, a
considerable number of studies have been conducted on TV
content recommendation systems. These TV content
recommendation applications should match the user’s desired
TV programs and recommend programs with a high user
preference [5]-[8]. The proposed content recommendation
service agent improves upon previous content recommendation
systems. It is more intelligent than previous applications because
it provides service without explicit requests and divides the user’s
preferences into common and specific models. It also has a
strong influence on other recommendation applications. In
addition, we have implemented a TV control service agent and
context-aware TV task based on CAMUS.

The remainder of this paper is organized as follows. Section
II introduces related works on context-aware middleware in
ubiquitous computing environments. Section III discusses the
system architecture of CAMUS, and section IV presents the
context-aware service agent and task based on CAMUS. In
section V, we implement and experiment with active services
in the TV domain. Finally, section VI summarizes this study.

II. Literature Review

Since Mark Weiser [9] proposed the concept of ubiquitous
computing, a significant amount of work has been devoted to
context-aware computing [10]-[14]. However, this research has
remained in the experimental stage of developing prototypes
because various contextual information applications and their
technologies have only been considered for specific applications
in specific platforms. Recently, to rectify this problem, research
has been actively progressing to develop flexible middleware
which can provide an infrastructure for context-aware services.

The Context Toolkit was developed as an intermediary
which deals with the context between a sensor and an
application service [15], [16]. It collects contextual information
from sensors, analyzes it, and delivers it to the application
services. As the name already suggests, the Context Toolkit is
not middleware, but a toolkit for implementing various types of
context-aware applications in distributed environments.

Ubi-UCAM provides a unified context-aware application
model that consists of a ubiSensor and a ubiService, and is

applied in a ubiHome [17]. In the ubiHome, several ubiSensors
provide the preliminary context corresponding to the user,
location, and time, and ubiService provides a context-aware
movie player.

Reconfigurable context-sensitive middleware (RCSM) for
pervasive computing separates the sensors and application
services, and delivers the necessary context information to
applications through an ad hoc network [18]. It also collects,
analyzes, and interprets contextual information. When this
contextual information satisfies the conditions of the registered
application services, RCSM delivers the information to the
application services. The client-side application decides
whether its application services should be executed.

Scarlet proposed a method of exchanging contextual
information between heterogeneous platforms [19]. The aim of
Scarlet’s research was to make it possible to acquire contextual
information from sensors in mobile devices through XML SOAP.

Service-oriented context-aware middleware (SOCAM) has
also been proposed for context-aware service development. A
formal context model was proposed based on ontology using
ontology web language (OWL) to address issues regarding the
semantic representation, context reasoning, context
classification, and dependency [20].

The GAIA system has also been developed as a middleware
which can obtain and infer different types of contextual
information from various environments [21]. In GAIA, the
context is represented by 4-ary predicates written in DAML+OIL
(DARPA agent markup language + ontology interface layer). The
middleware provides functions which infer high level contextual
information from low level sensor information, and predict the
context in advance by using historical context information. It also
aims to support the development and execution of portable
applications for active spaces.

This paper discusses several of the main technical issues
regarding context-aware application development for
ubiquitous computing environments using CAMUS to support
the user preference context and user location context
information.

III. Context-Aware Middleware for URC Systems

1. System Architecture of CAMUS

The CAMUS provides a framework for the development
and execution of context-aware applications for network-based
robots. The URC is a new concept for a network-based service
robot: it allows the robot to extend its functions and services by
utilizing external sensor networks and remote computing
servers. In the URC, CAMUS plays the important role of the
software infrastructure that expands the robot’s functions and

ETRI Journal, Volume 29, Number 2, April 2007 Aekyung Moon et al. 171

services, improves the context-awareness in the ubiquitous
computing environment, and enhances the robot’s intelligence.
To do this, CAMUS supports the following functions:

• gathering contextual information from various sensors and
delivering appropriate contextual information to various
applications and/or tasks,

• inferring higher level contexts from low level contexts,
• supporting a universal data model (UDM) to represent and

manage the contextual information,
• providing an event-condition-action (ECA) rule-based

program language extending the Java program language,
• tracking the location information of users or other entities

to support location-based services,
• providing an event driven application development

framework, and
• supporting a service framework enabling the easy

integration of various sensors and legacy applications.

Figure 1 shows the system architecture of CAMUS. The
CAMUS is composed of four parts: the CAMUS main server
(CAMUS-MS), the service agent manager (SAM), the service
agent (SA), and a communication framework called Planet.

The CAMUS-MS is a framework that collects contexts from
the SA and then uses the contextual information. In addition, it
supports a variety of functions for context-aware application
development. In particular, the CAMUS-MS controls all
information about the user context including environmental
contexts and user preferences which are required for content
recommendations. It then sends events related to the context
changes to the applications and helps the applications to
perform suitable actions for the context. There is another point
that is important for the CAMUS-MS. It offers a service
framework which can connect to the basic service agent of a
robot controller and a variety of software, such as voice
recognition, image recognition, and motion detection. In the
next section, we describe the detailed components of the
CAMUS-MS.

The SAM is a program which manages and controls SAs
within the environment. To do this, the SAM is installed within
various environments in a location. It obtains information from
a variety of sensors in the environment, sends the information
to the CAMUS-MS, receives instructions from the CAMUS-
MS, and controls the SAs in the environment. Therefore, the
SAM can be installed in any location, such as rooms or offices,
or in a robot platform or PDA.

An SA executes the functions of the legacy applications and
sensors installed in physical places through communication
with the SAM and the CAMUS-MS. An SA is an object proxy
for a device or an application which interacts with the

Fig. 1. System architecture of CAMUS.

Service agent
manager
Planet

CAMUS main server

Task manager

Environment
server

B
as

ic
 s

er
vi

ce
s

B
as

ic
 s

er
vi

ce

co
nt

ai
ne

r

Context manager

Event system

Planet

Service agent
manager
Planet

Robot platform

Robot

Service agent
manager
Planet

Device platform

Personal device

CAMUS-MS. It has an interface whish is accessed by the
CAMUS-MS. For example, suppose that the SA which
provides the user’s location needs to interface with the RFID
sensor in the current environment to send the user’s ID and
physical location. The SA needs to interface with the device
driver that is supported by the RFID sensor’s vendor.
Accordingly, this implemented program becomes the SA to
transfer the user’s location.

Planet is the communication framework of a network-based
robot system. The CAMUS-MS communicates with the SAM
through Planet. A network-based robot system should consider
not only the general computing environment, but also the
relatively limited device environment in resources such as
embedded systems. Therefore, Planet provides a binary
message encoding method to minimize the number of
messages to be transmitted. It also considers efficient methods
of transmitting large amounts of data, such as voice and images.
Moreover, Planet handles the long term operation of robots,
such as autonomous navigation and speech synthesis. Finally,
Planet controls these simultaneous accesses in multi-sessions
using locking mechanisms. Planet has been developed to
support various programming languages, including Java,
C/C++, and C#, run through various operating systems.

2. Conceptual Architecture of CAMUS

Figure 2 shows the conceptual architecture of CAMUS. The
sensor framework processes input data from various sources,
such as physical sensors, legacy applications, and user

172 Aekyung Moon et al. ETRI Journal, Volume 29, Number 2, April 2007

Fig. 2. Conceptual architecture of CAMUS.

Task manager

• CAMUS task execution/adaptation
• CAMUS task ECA rule descrption

Context manager
• Context knowledge storing/query/inference

Event system
• CAMUS event generation/dissemination

Sensor framework
• Sensor data interpretation

Service framework
• Sensor data interpretation

Sensors Actuators

Real world

C
A

M
U

S

commands, while considering the current situation. The sensor
framework then transfers the input data to the context manager.
For example, voice and image information from users,
temperature and humidity information from physical sensors,
user schedules from applications, and user preferences may be
included as sensor information. In particular, the sensor
interpreter included in the sensor framework for voice
commands is the voice recognizer, which translates voices into
textual commands, processes them considering the current
situation, and transfers them to the context manager.

The event system generates and manages events from
physically distributed environments and is responsible for
exchanging messages among the CAMUS components.
Above all, it delivers the events to the context manager and
task manager so that the CAMUS tasks are able to recognize
the situational changes and update the existing context model.

The context manager manages the contextual information
gathered from the sensor framework, which is represented by
the UDM. When the contextual information in the
environment changes, the context manager transfers the events
to the event manager. The events are then delivered to the task
manager to supply the necessary contextual information
required to execute tasks. The event notification system is
implemented using the subscribe and publish model.

The task manager initiates individual tasks, manages the on-
going task processes, and executes the actual tasks considering
the situation. To accomplish this, the task manager has an
inference engine to process the facts and rules supplied by a task.

The service framework coordinates the various sensors and
legacy applications. It manages the SAM and SA and also
controls devices such as the robot platforms and home
appliances.

IV. Context-Aware Active Services

To understand the proposed context-aware active services
including the content recommendation services, we first
illustrate a scenario that is likely to occur in a ubiquitous
computing environment. This example scenario represents a
TV application domain.

Example 1. Suppose there is a TV in the living room and a
TV in the bedroom. The TVs are controlled by voice
commands. The users want to execute seamless services in
their locations. The applications should take advantage of the
contextual information, such as the user’s location, to offer
greater services.

Scenario.
1) The user enters the living room and sits on the sofa.
2) The TV in the living room is turned on and set to the high

preference channel automatically.
3) The user controls the volume and channels with voice

commands.
4) The user moves to the bedroom.
5) The TV in the living room is turned off automatically.
6) The TV in the bedroom is turned on if the user leaves the

TV in the living room on.
7) The user moves to the child’s room.
8) The TV is not available in the child’s room.

To complete this scenario, the context-aware active services
in CAMUS consist of content recommendation, the actions of
control service agents, and the context-aware task. The content
recommendation service agent recommends personalized
items by comparing the contents and the user preference
context. The control service agent is responsible for controlling
properties in the physical world, such as a TV. For example, it
turns up the volume on the TV according to the user’s voice
commands and gestures. The context-aware task executes the
actual operation of the service agents considering the context.

1. Content Recommendation Service Agent

The system architecture of a content recommendation SA is
shown in Fig. 3. This SA consists of a recommendation engine
and a service agent interface. The recommendation engine has
three components: a content information manager, a
recommendation manager, and a user model manager.

First, the content information manager acquires the items for
recommendation from the content web server and stores them
in the content database. For example, the TV program content
database can be gathered from the broadcasting stations’ web
servers.

Secondly, the user model manager models a user’s

ETRI Journal, Volume 29, Number 2, April 2007 Aekyung Moon et al. 173

Fig. 3. Components of a recommendation engine and its service
agent.

CAMUS main server

Service agent
interface Property Operation Event

Recommendation engine

Content
database

User model
database

History
database

Content
information
manager

Recommendation
manager

User model
manager

preferences from the information recorded in the user’s profile
and updates the user model database according to the
information gathered from the user’s behavior, which is stored
in a history database. The user model database consists of two
parts: the common and the specific model parts. In particular,
the common model influences other recommendation service
agents because it contains a pair of keywords and a preference
value. This is also updated according to the history database
which stores the implicit feedback of the user and adapts to
changes in the user’s interests. The service agent generates a list
of items that the user has selected and stores it in the history
database. This user model update can be made by using various
aggregative algorithms. The method of updating the preference
value of the keywords (Vk

u) is expressed as

u
k

u
ku

k
F

FV
max

= , (1)

where u, k, and Fk
u are the user, the keyword, and the frequency

of the keyword as shown in the history table, respectively. The
preference value of a user about the keyword k (Preference k

u)
is computed as follows; hence, the user model is updated
related to the user’s preference:

Preference ku = Preference ku + (1 - Preference ku) × Vk
u. (2)

Finally, the recommendation manager plays an important
role in the content recommendation service agent because it
includes a recommendation module. The recommendation
manager is implemented according to the content-based
approach [22]. This approach matches the user’s profile to the
content and recommends content with the highest user
preference to generate recommendation lists for the user. The
method of computing the preference value of each item for
each user can be expressed by the two functions of the specific

model and the common model given in (1). The common
model is computed using the cosine similarity between
keyword vectors from the user model and the keyword vectors
extracted from the contents in (2). The function of the specific
model is related to the application domain; therefore, it can best
be described in an implementation example.

Preferenceu,i=α×Preferencespecific
u,i+β×Preferencecommon

u,i, (3)

u: user, i: items,
Preference u,i: The preference value of user u about item i,
Preferencespecific

u,i: The preference of the specific model,
Preferencecommon

u,i: The preference of the common model,
α: The weight of the specific model,
β: The weight of the common model.

Preferencecommon
u,i=COSINE_SIM(Vectorkeyword(c),Vectorkeyword(u)).

(4)

2. Context-Aware TV Task

The task is a set of work items that are taken in a specific
context or from the user’s command. Each work item, which is a
unit of action, is described using the ECA convention. The action
part describes the operations to be executed by the SA when the
incoming event meets specific conditions. The SA is accessed by
a task through the SAM shown in Fig. 1.

Figure 4 shows the state transition diagram of a context-
aware TV task designed to implement the scenario represented
in example 1. The proposed task uses the two events of
UserEntered and SpeechReceived provided by the user to
CAMUS. UserEntered is generated by the RFID sensor or
image recognition application and is related to the user’s
location; SpeechReceived is related to the user’s voice
command. This task consists of four states: Starting,
TVNotAvailable, TVON, and TVOFF. As the user moves, the
task checks the user’s current location, checks the status of the
TVs, and executes the related operations of the service agents.

Fig. 4. State transition diagram of a context-aware TV task.

Starting

TVNotAvailable

TVON TVOFF
“Turn on TV” SpeechReceived

“Turn off TV” SpeechReceived

[State(TV) == ON]
[State(TV) == OFF]]

UserEntered
UserEntered

[TV is not available] UserEntered

Environment

Context-aware TV task

Event Action

174 Aekyung Moon et al. ETRI Journal, Volume 29, Number 2, April 2007

A. Starting State

This is the initial state. It branches to the TVON, TVOFF,
and TVNotAvailable states depending on the states of the TVs
and the user’s current location.

B. TVNotAvailable State

This state indicates that the TV is not available at the user’s
current location. If the user’s location changes, the process
returns to the starting state.

C. TVON State

This state means that the TV at the user’s current location is
turned on. On entering this state, the task executes the
recommendation operation of the TV content recommendation
service agent, and it changes to a high preference TV channel
using the control service agent. Also, the user can control the
TV with voice commands. For example, if the user says, “Turn
off TV,” the TV is turned off and the state transitions to the
TVOFF state. If the user location changes, the state transitions
to the starting state and turns off the TV. In this state, when the
user moves to another location with an available TV, the
starting state executes operations of the control service agent
and turns on TV in the location.

D. TVOFF State

This state indicates that the existing TV at the user’s current
location is turned off. If the user’s location changes, this state
transitions to the starting state. If the user says, “Turn on TV,”
then it turns on the TV through the control service agent and
transitions to the TVON state.

V. Implementation

To evaluate the active services, we applied them to a TV
application domain. Therefore, we implemented the TV
content recommendation and control service agents and a
context-aware TV task was implemented. Finally, we
evaluated the example scenario mentioned above.

1. TV Content Recommendation and Control Service Agent

To implement a context-aware service based on CAMUS,
the SA defines the property. The property is represented by a
name and value pair. A task can access the service agent’s
property through the service framework and check the state of
a variety of sensors and devices in ubiquitous computing
environments. Furthermore, by changing the value of a
property, the task can control the devices and software
applications. In the design of the TV content recommendation

Table 1. Properties of the TV content recommendation service agent.

Property Definition
tv_recommendation
_number

Number of programs that the user wants to be
recommended

tv_obtain_interval

Number of days between information updates:
the interval between times when the
broadcasting information manager acquires the
TV broadcasting information from the
broadcasting station’s web server

tv_program_start_limit
Starting time limitations of a recommended TV
program

tv_ program _end_limit
Ending time limitations of a recommended TV
program.

tv_channel_code Local TV channel code

service agent, we considered the properties shown in Table 1.
The content of TV programs can be represented by these

items: identification information (ID/title), category
information (genres/subgenres), broadcast information
(channel/starting time/ending time), content ratings, and
keywords. The content ratings and keywords are particularly
important because the content ratings prevent users from being
recommended inappropriate TV programs, (for example, TV
programs with violent or sexual content being recommended to
teenagers) and the keywords affect the user model of other
recommendation service agents. Suppose a user views
programs related to the FIFA World Cup regularly. In that case,
the preference value of the FIFA World Cup keyword increases.
As a result, the recommendation probability of news related to
the FIFA World Cup increases in the web news
recommendation service agent.

To compute user preferences in the recommendation
manager depicted in Fig. 3, the TV specific model is divided
into three types of TV content information: genre, channel, and
person. To collect this information about the user’s interests, the
system can ask the user to manually indicate their interests
through a graphical user interface (GUI). The function of the
TV specific model consists of computing the preference of
genre, channel, and person, and multiplying each result by
weights, as follows:

Preferencespecific
u,i=Wg×Preferencegenre

u,p+Wc×Preferencechannel
u,p

 +Wp×Preferenceperson
u,p, (5)

u: user, i: items, p: TV broadcasting program,
Preferencespecific

u,i: preference of the specific model of user u
about item i,

Wg: genre weight, Wc: channel weight, Wp : person weight.

In addition, we utilized the user’s viewing pattern based on

ETRI Journal, Volume 29, Number 2, April 2007 Aekyung Moon et al. 175

Fig. 5. Updating algorithms of the F-TBL.

initialize U-TBL
while(has more H-TBL)
 program information obtains next history from H-TBL
 d is index of day
 t is index of time
 g is index of genre
 increase U-TBL[d][t][g]

 end of while
for i∈day

for j∈time
for k∈genre
 F-TBL[i][j][k] += U-TBL[i][j][k]

end of for
end of for

 end of for

the time context using the day and the time. To acquire this
information, the recommendation manager registers the
following frequency table (F-TBL) information. The F-TBL is
represented by the three-dimensional matrix that includes day,
time, and genre, and registers the frequency of the user viewing
specific genres according to days and times into the user model
database. The F-TBL is computed by a history table (H-TBL),
which is stored in the history database. Figure 5 shows the
detailed algorithm used to update the F-TBL. The updating table
(U-TBL) stores the temporary information used to compute the
F-TBL.

The TV control SA defines the IP and port properties used to
communicate with digital TVs or set top boxes (STB). The TV
control service agent’s operations are the following three types
as shown in Table 2.

Table 2. Operations of the TV control service agent.

On/off
boolean getPower()
void setPower(boolean power)

Channel
void setChannel(int channel);
void channelUp();
void channelDown();

Volume
void volumeUp();
void volumeDown();

2. Context-Aware TV Task

The CAMUS system supports the programming language
for ubiquitous environment (PLUE) which allows the
programmer to develop context-aware tasks. Essentially,
PLUE is an extension of the Java programming language and
its compiler is a pre-processor of the Java compiler. The
following program code is an example of a TV task for the
TVON state as described by PLUE. The ECA rules in PLUE

can be augmented with an event expression so that they start
only when an expected event is received. Specifically, they
are used intensively in the domain where the applications
need to react to environmental changes quickly. On entering
the TVON state, the task executes a TV content
recommendation operation and selects a TV channel with a
high preference TV program using the TV control service
agent.

In the program code shown in Fig. 6, $place indicates the
service agents existing in the user’s current location and
$owner identifies the specific user. Also, the user can control
the TV using voice commands. For example, if the user says,
“Turn off TV,” the TV is turned off and moves to the TVOFF
state. As shown in the example above, the expression “on
event SpeechReceived (e)” describes the event that starts this
rule and the expression “if (e.symbol = = volume up)”
describes the condition of the rule. Finally, the remainder of
the rule explains the action to be taken. The rule in the
example is read as, “Whenever the user says volume up, turn
up the volume of the TV.” Conventional Java method calls
are allowed in the rule expression: volumeUp() is an
operation of the TV control service agent. If the location of
the user changes, the state transitions to the starting state and
turns off the TV.

Figure 7 shows the results of this task. In the case in which

Fig. 6. Pseudo program code of the TVON state.

State TVON {
 entry {
 TVProgram info =

 $place.tv.service.getRecommendation($owner);
$place.tv.serviceagent.setChannel(info.channel);

 }
 Exit {$place.tv.service.setPower(false); }
 on event SpeechReceived(e)
 condition(e.symbol == 'volume up')
 $place.tv.volumeUp();

 on event SpeechReceived(e)
 condition(e.symbol == 'volume down')
 $place.tv.volumeDown();
 }
 Transition StateTVON-> StateTVOFF {
 on event SpeechReceived(e)
 condition(e.symbol == “tv off”)
 $place.tv.setPower(false);

}
Transition StateTVON -> Starting {
 on event UserEntered(e)

condition($owner.lastLocation()!= $owner.currentLocation()) {
$owner.tv = true;
$place.tv.setPower(false);

}
 }

176 Aekyung Moon et al. ETRI Journal, Volume 29, Number 2, April 2007

the user enters a room and turns on the TV, the selected
program ranks first on the recommendation list. These results
are presented on a PDA and consist of TV programs broadcast
by Korean broadcasting stations.

Figure 8 shows the results of the experiments based on the
scenario in example 1. The user’s location is recognized by an
RFID sensor and a camera sensor. When the user enters the
living room, the TV is turned on and automatically set to the
channel with the highest preference (Fig. 8(a)). When the user
moves to the bedroom, the TV is turned off in the living room
and at the same time the TV in the bedroom is automatically
turned on (Fig. 8(b) and (c)). However, if the user moves to the
child’s room, the TV is turned off in the bedroom because no
TV is available in the child’s room (Fig. 8(d) and (e)).

Fig. 7. Result of the task.

VI. Conclusion

In this paper, we proposed context-aware active services
using CAMUS. The proposed content recommendation SA
and context-aware task were developed based on the service
framework and task development methodology of CAMUS.
The proposed content recommendation SA is more intelligent
than previous content recommendation applications because it
provides services even when there is no explicit request and it
divides the user preferences into common and specific models;
it also has a strong influence on other recommendation
applications.

To evaluate our system, we applied the proposed active
services to a TV application domain. Also, in the
implementation of the TV content recommendation SA, we
registered content ratings. This is a strong point of our system
because the content ratings prevent users from being
recommended inappropriate TV programs. We utilized the
user’s viewing pattern behavior based on the time context and
implemented a TV control SA and context-aware task based on
CAMUS. Finally, the implemented context-aware TV task
responded in a timely fashion to changing contexts, such as the

Fig. 8. Snapshots of the experiment.

(a) The user is in the living room.

Locating user (RFID Tag)

RFID reader

(b) The user moved to the bedroom.

(c) The user in the bedroom.

Locating user (RFID Tag)

RFID reader

(d) The user moved to the child’s room.

(e) The user in the child’s room.

Locating user (RFID Tag)

Camera sensor

ETRI Journal, Volume 29, Number 2, April 2007 Aekyung Moon et al. 177

user’s location and voice commands.

References

[1] A. Ranganathan and R.H. Campbell, “A Middleware for Context-
Aware Agents in Ubiquitous Computing Environments,” LNCS
(2672), 2003, pp. 143-161.

[2] K. Min, K. Nam, and J. Kim, “Multilevel Location Trigger in
Distributed Mobile Environments for Location-Based Services,”
ETRI Journal, vol.29, no.1, 2007, pp.107-109.

[3] H. Kim, Y. Cho, and S. Oh, “CAMUS: A Middleware Supporting
Context-Aware Services for Network-Based Robots,” IEEE
Workshop on Advanced Robotics and Social Impacts, 2005.

[4] Y. Ha, J. Sohn, Y. Cho and H. Yoon, “Towards Ubiquitous
Robotic Companion: Design and Implementation of Ubiquitous
Robotic Service Framework,” ETRI Journal, vol. 27, no. 6, 2005,
pp. 666-676.

[5] L. Ardissono, et al., “Personalized Recommendation of TV
Programs,” LNCS (2829), 2003, pp. 474-486.

[6] W. Lee and T. Yang, “Personalizing Information Appliances: A
Multi-agent Framework for TV Programm Recommendations,”
Expert Systems with Applications, vol. 25, 2003, pp. 331-341.

[7] Y. Blanco-Fernández, et al., “AVATAR: An Advanced Multi-
agent Recommender System of Personalized TV Contents by
Semantic Reasoning,” LNCS (3306), 2004, pp. 415-421.

[8] J. Xu, L. Zhang, H. Lu, and Y. Li, “The Development and
Prospect of Personalized TV Program Recommendation
Systems,” Proc. IEEE Symp. Multimedia Software Engineering,
2002, pp. 82-89.

[9] M. Weiser, “The Computer of the 21st Century,” Scientific
American, vol. 265, no. 3, 1991, pp. 66-75.

[10] R. Want, A. Hopper, V. Falcão, and J. Gibbons, “The Active
Badge Location System,” ACM Transactions on Information
Systems, vol. 10, no. 1, Jan. 1992, pp. 91-102.

[11] G.M. Voelker and B.N. Bershad, “Mobisaic: An Information
System for a Mobile Wireless Computing Environment,” IEEE
Workshop on Mobile Computing Systems and Applications, 1994.

[12] A. Asthana, M. Cravatts, and P. Krzyzanowski, “An Indoor
Wireless System for Personalized Shopping Assistance,” IEEE
Workshop on Mobile Computing Systems and Applications, 1994.

[13] R. Want, B.N. Schilit, N.I. Adams, R. Gold, K. Petersen, D.
Goldberg, J.R. Ellis, and M. Weiser, Mobile Computing, Kluwer
Academic Publishers, 1996.

[14] G.D. Abowd, C.G. Atkeson, J. Hong, S. Long, R. Kooper, and M.
Pinkerton, “Cyberguide: A Mobile Context-Aware Tour Guide,”
Wireless Networks, vol. 3, no. 5, Oct. 1997, pp. 421-433.

[15] A.K. Dey, M. Futakawa, D. Salber, and G.D. Abowd, “The
Conference Assistant: Combining Context-Awareness with
Wearable Computing,” Symposium on Wearable Computers, Oct.
1999.

[16] A.K. Dey and G.D. Abowd, “The Context Toolkit: Aiding the
Development of Context-Aware Applications,” Workshop on
Software Engineering for Wearable and Pervasive Computing
(SEWPC), 2000.

[17] S. Jang and W. Woo, “Ubi-UCAM: A Unified Context-Aware
Application Model,” Context, LNAI (vol. 2680), 2003, pp. 178-
189.

[18] S.S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gupta,
“Reconfigurable Context-Sensitive Middleware for Pervasive
Computing,” IEEE Pervasive Computing, vol. 1, no. 3, 2002.

[19] A. Daftari, N. Mehta, S. Bakre, and X.H. Sun, “On the Design
Framework of Context Aware Embedded Systems,” Software
Engineering for Embedded Systems: From Requirements to
Implementation, 2003.

[20] T. Gu, H.K. Pung, and D.Q. Zhang, “A Middleware for Building
Context-Aware Mobile Services,” IEEE Vehicular Technology
Conference (VTC), 2004.

[21] G. Biegel and V. Cahill, “A Framework for Developing Mobile,
Context-Aware Applications,” IEEE Int’l Conf. on Pervasive
Computing and Communications (PerCom), 2004.

[22] M. Balabnovic and Y. Shoham, “Content-Based, Collaborative
Recommendation,” CACM, vol. 40, no. 3, 1997, pp. 66-72.

Aekyung Moon received the MS and PhD
degrees in computer engineering from
Yeungnam University, Korea, in 1992 and
2000, respectively. In 2000, she joined
Electronics and Telecommunication Research
Institute, Korea. Currently, she is a senior
researcher in the Software Robot Research

Team. Her research interests include distributed systems, context-
aware middleware, sensor networks, and recommendation systems.

Hyoungsun Kim received the MS degree in
computer engineering from Kwangwoon
University, Seoul, Korea, in 1991, and the PhD
degree in computer engineering from Daejeon
University, Daejeon, Korea, 2003. He had
worked for Systems Engineering Research
Institute (SERI) from 1986 to 1998. He joined

Electronics and Telecommunications Research Institute (ETRI) in
1998 and has worked on software development related to intelligent
robots. Currently, he is senior researcher in the Software Robot
Research Team, ETRI. His research interests include context-aware
computing, networked robots, software robots, distributed computing,
Information security, and distributed database.

178 Aekyung Moon et al. ETRI Journal, Volume 29, Number 2, April 2007

Hyun Kim received the BS, MS, and PhD
degrees in the Department of Mechanical
Design and Manufacturing from Hanyang
University, Seoul, Korea, in 1984, 1987, and
1997, respectively. He worked for Systems
Engineering Research Institute (SERI) from
1990 to 1998. He joined ETRI in 1998 and has

worked on software development related to intelligent systems.
Currently, he is a project leader in the Intelligent Robot Research
Division, ETRI. His research interests include networked robots,
context-awareness and ubiquitous computing, distributed computing,
and virtual engineering.

Soowon Lee is an associate professor in the
School of Computing at Soongsil University,
Korea, and director of its Mining Lab. He
received his PhD in computer science from the
University of Southern California in 1994. His
current research interests include data mining,
personalization, machine learning, and agent

systems.

