• Title/Summary/Keyword: Intelligent Mobile Robot

Search Result 455, Processing Time 0.031 seconds

Navigation Strategy of Mobile Robots based on Fuzzy Neural Network with Hierarchical Structure (계층적 구조를 가진 Fuzzy Neural Network를 이용한 이동로보트의 주행법)

  • 최정원;한교경;박만식;이석규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.269-273
    • /
    • 2000
  • This paper proposes a algorithm for several mobile robots navigation. There are three parts in this algorithm. First part generates robots turning angle and moving distance for goal approaching, sencond part generates robots avoiding angle and avoiding distance for static obstacles or other robots and third part adjust between robots moving distance and avoiding distance. Most simulation results of this algorithm are very effective for several mobile robots traveling in unknown field.

  • PDF

Generation of Fuzzy Rules for Cooperative Behavior of Autonomous Mobile Robots

  • Kim, Jang-Hyun;Kong, Seong-Gon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.164-169
    • /
    • 1998
  • Complex "lifelike" behaviors are composed of local interactions of individuals under fundamental rules of artificial life. In this paper, fundamental rules for cooperative group behaviors, "flocking" and "arrangement", of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Fuzzy rules in Sugeno type and their related paramenters are automatically generated from clustering input-output data obtained from the algorithms the group behaviors. Simulations demonstrate the fuzzy rules successfully realize group intelligence of mobile robots.

  • PDF

Localization of Mobile robot using color landmark (컬러 랜드마크를 이용한 이동 로봇의 자가 측위)

  • Gim, Seong-Chan;Ko, Su-Hong;Kim, Hyong-Suk;Kim, Jong-Man;Lee, Wang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.545-547
    • /
    • 2006
  • This paper propose a localization method using color landmark that is applicable to mobile intelligent robot. The color landmarks are attached in the indoor ceiling. The world coordinate of robot is estimated by color patterns and the coordinates of landmarks. A landmark is composed of 4color and these 4 colors are sorted in a line. All of landmarks have a main color which indicates direction of robot. Other 3 colors are the combination of 5 kind of colors. The CCD camera is installed on the top of robot to observe the landmarks in the ceiling.

  • PDF

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Development of Educational Robot Platform Based on Omni-directional Mobile Mechanism (전방향 이동 메커니즘 기반의 교육용 로봇 플랫폼 개발)

  • Chu, Baeksuk;Sung, Young Whee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1161-1169
    • /
    • 2013
  • In this paper an omni-directional mobile robot is suggested for educational robot platform. Comparing to other robots, a mobile robot can be easily designed and manufactured due to its simple geometric structure. Moreover, since it is required to have low DOF motion on planar space, fabrication of control system is also simple. In this research, omni-directional wheels were adopted to remove the non-holonomic characteristic of conventional wheels and facilitate control system design. Firstly, geometric structure of a Mecanum wheel which is a most frequently used omni-directional wheel was demonstrated. Then, the organization of the mobile platform was suggested in aspects of mechanism manufacturing and electronic hardware design. Finally, a methodology of control system development was introduced for educational purpose. Due to an intuitive motion generating ability, simple hardware composition, and convenient control algorithm applicability, the omni-directional mobile robot suggested in this research is expected to be a promising educational platform.

Searching Methods of Corresponding Points Robust to Rotational Error for LRF-based Scan-matching (LRF 기반의 스캔매칭을 위한 회전오차에 강인한 대응점 탐색 기법)

  • Jang, Eunseok;Cho, Hyunhak;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.505-510
    • /
    • 2016
  • This paper presents a searching method of corresponding points robust to rotational error for scan-matching used for SLAM(Simultaneous Localization and Mapping) in mobile robot. A differential driving mechanism is one of the most popular type for mobile robot. For driving curved path, this type controls the velocities of each two wheels independently. This case increases a wheel slip of the mobile robot more than the case of straight path driving. And this is the reason of a drifting problem. To handle this problem and improves the performance of scan-matching, this paper proposes a searching method of corresponding points using extraction of a closest point based on rotational radius of the mobile robot. To verify the proposed method, the experiment was conducted using LRF(Laser Range Finder). Then the proposed method is compared with an existing method, which is an existing method based on euclidian closest point. The result of our study reflects that the proposed method can improve the performance of searching corresponding points.

Remote Navigation System for Mobile Robot (이동 로봇의 원격 주행 시스템)

  • Kim, Jong-Seon;Yu, Yeong-Seon;Kim, Sung-Ho;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.325-327
    • /
    • 2007
  • In this paper, we implement the internet- based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of- the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

  • PDF

Implementation of Remote Control System of Robot using Web Browser (웹 브라우져를 이용한 원거리 로봇 조작 시스템 구현)

  • 선상준;이동옥;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.288-291
    • /
    • 2000
  • In this paper we implement a robot system consisted of mobile tole robot to be controlled by client through web browser Newly Internet is connected to all network of the whole world. If client uses the network like this, client can control direction of a robot that is selected in free place. In this study, system is embodied in using robot that can move freely in plan place and cod camera that can grab robot image. System transmit image data of cod camera to java server that is placed in web server of internet that is used by client. Java server display incoming data in home page using java applet. Then web browser offer robot image to client and client send remote control signal to robot. Control signal is transmitted to robot by java server and robot receiving signal moves toward direction wanted by client.

  • PDF

Design and Development of a Monitoring System based on Smart Device for Service Robot Applications

  • Lee, Jun;Seo, Yong-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Smart device has become an affordable main computing resource for robotic ap-plications in accordance with a fast growth of mobile internet environment. Since the computing power of smart device has been increased, smart device based ro-bot system attempts to replace traditional robot applications with laptop-based system. Methodologies for acquisition of remote sensory information and control of various types of robots using smart device have been proposed recently. In this paper, we propose a robot control system using a monitoring program and a communication protocol. The proposed system is a combination of an educa-tional programming oriented robot named EPOR-S. as small service robot plat-form and a smart device. Through a simulation study using image processing, the feasibility of combination of the proposed robot monitoring program and control system was verified.

Path Planning for Autonomous Mobile Robot using Potential Field

  • Jung, Kwang-Min;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.315-320
    • /
    • 2009
  • The popularity of autonomous mobile robots have been rapidly increasing due to their new emerging application areas, from room cleaning, tourist guidance to space explorations. However, the development of a satisfactory control algorithm that will enable the autonomous mobile robots to navigate safely especially in dynamic environments is still an open research problem. In this paper, a newly proposed potential field based control method is implemented, analyzed, and improvements are suggested based on experimental results obtained from simulations. The experimental results are presented to show the effectiveness of the behavior-based control using the proposed potential field generation technique.