International Journal of Fuzzy Logic and Intelligent Systems
/
제16권4호
/
pp.293-298
/
2016
Document summarization is an important task in various areas where the goal is to select a few the most descriptive sentences from a given document as a succinct summary. Even without training data of human labeled summaries, there has been several interesting existing work in the literature that yields reasonable performance. In this paper, within the same unsupervised learning setup, we propose a more principled learning framework for the document summarization task. Specifically we formulate an optimization problem that expresses the requirements of both faithful preservation of the document contents and the summary length constraint. We circumvent the difficult integer programming originating from binary sentence selection via continuous relaxation and the low entropy penalization. We also suggest an efficient convex-concave optimization solver algorithm that guarantees to improve the original objective at every iteration. For several document datasets, we demonstrate that the proposed learning algorithm significantly outperforms the existing approaches.
As immersive video contents have started to emerge in the commercial market, research on it is required. For this, efficient coding methods for immersive video are being studied in the MPEG-I Visual workgroup, and they released Test Model for Immersive Video (TMIV). In current TMIV, the patches are packed into atlas in order of patch size. However, this simple patch packing method can reduce the coding efficiency in terms of 2D encoder. In this paper, we propose patch packing method which pack the patches into atlases by using the similarity of each patch for improving coding efficiency of 3DoF+ video. Experimental result shows that there is a 0.3% BD-rate savings on average over the anchor of TMIV.
본 논문은 3차원 모델을 제작하고 Unity를 활용하여 사용자가 보다 더 쉽게 지능형 관광서비스를 접할 수 있도록 하는 방법을 연구했다. 본 연구의 핵심기능 및 환경은 게임 제작용 툴인 Unity를 사용하여, 가상공간을 만들고 안에서 제어와 카메라 시점을 적용한 NPC를 통해 다양한 각도와 위치에서 관광 서비스를 이용할 수 있도록 하는 방법을 연구했다. 본 프로젝트는 가상현실 기술을 활용하여 관광명소를 현장에 가지 않고도 가상 세상에서 둘러 볼 수 있는 지능형 서비스 콘텐츠이다. 본 지능 서비스는 UI/UX 도구를 사용해 게임 형태로 만들고 재미요소를 넣기 위해 간단한 게임 형태로 융합하여 관광지 홍보를 위한 게이미피케이션을 적용했으며, 가상현실 관광지 체험을 실행할 수 있게 하는 것이 연구의 목적이다.
Broadcast is evolving into media service aimed at user customization, personalization, and participation with high-quality broadcasting contents (4K/8K/AR/VR). A broadcast infrastructure is needed to engage with the competition for providing large-scaled media traffic process, platform performance for adaptive transcoding to diverse receivers, and intelligent service. Cloud service and virtualization in broadcast are becoming more valuable as the broadcasting environment changes and new high-level broadcasting services emerge. This document describes the examples of cloud and virtualization in the broadcast industry, and prospects the network virtualization of broadcast transmission infrastructure, especially terrestrial and cable networks.
인터넷 환경의 변화에 따라 텍스트 기반의 정보 전달에서 멀티미디어 기반의 스트리밍 방식으로 바뀌어가고 있다. 또한 대용량의 동영상 데이터뿐 아니라 Shorts, Clip Reels 또는 등 다양한 방식의 동영상 형태로 배포되고 있으며 서비스 플랫폼에서는 손쉽게 편집할 수 있도록 기능을 제공하고 있다. 대용량 콘텐츠, TV, Youtue 콘텐츠를 포함하여 소용량 동영상 편집에 필요한 영상 제작 기술에서 가장 인력과 시간이 많이 소요되는 부분은 편집 단계로 딥러닝 기반 인공지능 기술을 활용하여 자동화하고 있으며 영상편집에서 가장 기본이 되는 단위인 씬검출 기법을 개발하였다. 키프레임 검출 기법과 유사도 기법을 이용하여 씬을 추출하였으며 블록 Cost Function을 이용하여 최적화하여 0.5214의 정확도를 도출하였다.
디지털 방송이 대중화면서 방송 프로그램의 음량은 프로그램의 효과, 방송사간의 경쟁 등으로 인해 점점 더 커지고, 채널 간 및 프로그램 간의 음량 불균형이 심해지고 있다. 이를 해결하기 위해 ITU-R 에서는 음량 측정 방법 및 기준 음량에 대한 연구하여, 그 결과로 BS.1770 표준을 권고하였다. 이 국제 기준을 바탕으로 미국, EU, 일본 등 주요 선진국 뿐만 아니라 우리나라에서는 자국 내 기준을 제정하고, 디지털 방송 프로그램의 음량에 대한 규제를 시행하고 있다. 본 논문에서는 우리나라에서 음량 측정 방법으로 적용한 ITU-R BS.1770-3 방송 프로그램의 음량 측정 기법에 대해서 기술하고, 음량 측정 기법의 고속화 구현을 위한 방법을 제안한다. 제안된 방법은 BS.1770-3 의 음량 측정 기법에 적용된 필터와 True Peak 측정을 위한 필터의 병렬 고속화 방법으로 일반적인 필터 구현에 비해 4 배의 고속화를 달성하였으며, 제안된 방법을 EBU R128 및 Tech 3341 의 컨퍼먼스 스트림으로 실험하여 표준 규격을 만족하였다.
사물인터넷 기술은 농업, 낙농업 등의 기술에 적용되어 도시에서도 간편하고 손쉽게 농작물을 재배하는 것을 가능하게 한다. 특히, 농업 부문에서 재배작물의 생장환경에 맞도록 지능적으로 판단하고 제어하는 사물인터넷 기술이 발전되고 있다. 본 논문에서는 지능형 사물인터넷을 이용하여 식물의 수분 공급 주기를 학습함으로써 식물의 생장 환경을 예측하는 방법을 제안한다. 제안된 시스템은 토양 수분량의 수분단계를 지도 학습으로 찾아내고, 측정된 수분단계를 기반으로 수분 공급의 규칙을 찾아낸다. 이러한 규칙을 기반으로 수분 공급 주기를 예측하고, 미디어를 이용하여 출력함으로써 사용자가 사용하기에 편리하도록 구현하였다. 또한, 센서가 측정하는 값의 오차를 줄이기 위하여 식물간에 서로 정보를 교환함으로써 오류가 있는 경우의 값을 보완해 가면서 예측의 정확도를 높였다. 생장 환경 예측 시스템의 성능을 평가하기 위하여 토양 수분 공급량이 현격히 차이가 있는 여름과 겨울로 나누어서 실험하였으며, 정확도가 높음을 검증하였다.
Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.
현재 각 기업 및 기관에서 구축하고 있는 디지털 콘텐츠는 HTML을 비롯한 다양한 형식의 멀티미디어로 작성되어 있다. 따라서 타 기관에 전시된 콘테츠 정보를 검색하거나 연동하기는 불가능하다. 뿐만아니라 시스템을 확장하기 위해서는 전체 시스템을 교체해야하는 문제도 파생될 수 있다. 그러나 본 연구에서 제안하는 플랫폼은 기존 레거시(Legacy) 어플리케이션을 수정하지 않더라도 쉽게 신 시스템과 연동이되고 타 시스템과도 연동이된다. 또한 CORBA에 기반한 부하 분산 기법과 분산 처리기법을 도입하여 하나의 시스템에 과부하가 발생하여 전체 시스템의 성능이 저하되는 문제를 방지하고 안정성을 보장하기 위하여 Fail-over기능을 제공한다. 또한 SyncML 기법을 도입하여 여러 종류의 DBMS를 사용하는 타 기관과의 콘텐츠 실시간 공유를 지원한다. 이로써 콘텐츠를 쉽게 저장 및 유통할 수 있는 기반 환경을 제공한다.
스마트 기기의 보급률 증가와 더불어 코로나의 영향으로 스마트 기기를 통한 미디어 콘텐츠의 소비가 크게 늘어나고 있다. 이러한 추세와 더불어 OTT 플랫폼을 통한 미디어 콘텐츠의 시청과 콘텐츠의 양이 늘어나고 있어서 해당 플랫폼에서의 콘텐츠 추천이 중요해지고 있다. 콘텐츠 기반 추천 관련 기존 연구들은 콘텐츠의 특징을 가리키는 메타 데이터를 활용하는 경우가 대부분이었고 콘텐츠 자체의 내용적인 메타 데이터를 활용하는 경우는 부족한 상황이다. 이에 따라 본 논문은 콘텐츠의 내용적인 부분을 설명하는 제목과 시놉시스를 포함한 다양한 텍스트 데이터를 바탕으로 유사한 콘텐츠를 추천하고자 하였다. 텍스트 데이터를 학습하기 위한 모델은 한국어 언어모델 중에 성능이 우수한 KLUE-RoBERTa-large를 활용하였다. 학습 데이터는 콘텐츠 제목, 시놉시스, 복합 장르, 감독, 배우, 해시 태그 정보를 포함하는 2만여건의 콘텐츠 메타 데이터를 사용하였으며 정형 데이터로 구분되어 있는 여러 텍스트 피처를 입력하기 위해 해당 피처를 가리키는 스페셜 토큰으로 텍스트 피처들을 이어붙여서 언어모델에 입력하였다. 콘텐츠들 간에 3자 비교를 하는 방식과 테스트셋 레이블링에 다중 검수를 적용하여 모델의 유사도 분류 능력을 점검하는 테스트셋의 상대성과 객관성을 도모하였다. 콘텐츠 메타 텍스트 데이터에 대한 임베딩을 파인튜닝 학습하기 위해 장르 분류와 해시태그 분류 예측 태스크로 실험하였다. 결과적으로 해시태그 분류 모델이 유사도 테스트셋 기준으로 90%이상의 정확도를 보였고 기본 언어모델 대비 9% 이상 향상되었다. 해시태그 분류 학습을 통해 언어모델의 유사 콘텐츠 분류 능력이 향상됨을 알 수 있었고 콘텐츠 기반 필터링을 위한 언어모델의 활용 가치를 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.