• 제목/요약/키워드: Intelligent Machine Tool

검색결과 123건 처리시간 0.024초

온더머신 지능형 측정 및 검사시스템 (An Intelligent Measuring and inspection System On the Machine Tools)

  • 김경돈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.101-106
    • /
    • 1996
  • Interactive Measuring part Program Generating Tools (IMPPGT) realized on the FANUC 15MA using touch trigger probes and interactive macro functions os the CNC were developed for an intelligent measuring and inspection systems on the machine tools. Menu driven measuring and inspection functions of the IMPPGT were studied and implemented on the CNC through the macro executer and ROM writer. In order to automate measurement and inspection procedures in machine shops measuring G Code system was also proposed. Using the developed measuring G Code system on the machine tool untended measurement and inspection operation was able to be realized in FMS lines.

  • PDF

코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석 (Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining)

  • 최수진;이동주;황승국
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.

지능형 공작기계 설계 지원 시스템 (Intelligent Design Support System for Machine Tool Design)

  • 박면웅
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.15-24
    • /
    • 2000
  • An intelligent software system which can support efficiently and systematically machine tool design by utilizing deign knowledge is described in this paper. The process of embodiment design of a machining center was modelled represented by IDEF0 and embedded in the system. A hybrid type inference engine has been introduced so that the system can effec-tively deal with knowledge represented in diversified forms The design system was developed on the basis of object-ori-ented programming and has been coded into one software system which can be ported on Windows NT.

  • PDF

초소형 공작기계 적용을 고려한 광학식 3 축 공구원점 센서 모델링 및 실험에 관한 연구 (Study on Modeling and Experiment of Optical Three Axis Tool-Origin Sensor for Applications of Micro Machine-Tools)

  • 신우철;이현화;노승국;박종권;노명규
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.68-73
    • /
    • 2009
  • One of the traditional optical methods to monitor a tool is a CCD sensor-based vision system which captures an aspect of the tool in real time. In the case using the CCD sensor, specific lens-modules are necessary to monitor the tool with higher resolution than its pixel size, and a microprocessor is required to attain desired data from captured images. Thus theses additional devices make the entire measurement system complex. Another method is to use a pair of an optical source and a detector per measuring axis. Since the method is based on the intensity modulation, the structure of the measurement system is simper than the CCD sensor-based vision system. However, in the case measuring the three dimensional position of the tool, it is difficult to apply to micro machine-tools because there may not be space to integrate three pairs of an optical source and a detector. In this paper, in order to develop a tool-origin measurement system which is employed in micro machine-tools, the improved method to measure a tool origin in x, y and z axes is introduced. The method is based on the intensity modulation and employs one pair of an optical source radiating divergent beams and a quadrant photodiode to detect a three dimensional position of the tool. This paper presents the measurement models of the proposed tool-origin sensor. The models were verified experimentally The verification results show that the proposed method is possible and the induced models are available for design.

Performance assessment of an ultraprecision machine tool positioning system with a friction drive

  • Song Chang-Kyu;Shin Young-Jae;Lee Hu-sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.8-12
    • /
    • 2005
  • The positioning system for an ultra precision machine tool must be accurate to the order of a nanometer. Various feed drive devices have been proposed to achieve this resolution; currently, most attention is directed towards hydrostatic lead screws and friction drives. It has been reported that a positioning resolution accurate to an angstrom can be achieved using a twist-roller friction drive. Therefore, we manufactured an ultra precision positioning system driven by a twist-roller friction drive and assessed its performance when defining problems and finding solutions. Our study showed that the twist-roller friction drive is mechanically suitable for ultra precision positioning, but some considerations are required to obtain a higher resolution.

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

3차원 자동 연마장치의 개발 (Development of 3 dimensional Automatic Polishing System)

  • 정윤교;김남우;문병준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.314-318
    • /
    • 2002
  • Recently, new polishing tool which was made by magnetic intelligent compound(Magic) was invented. The distribution of abrasives in this new tool can be controlled by magnetic field. Therefore, we can make a special polishing tool which has well arranged abrasives after cooling. In this study, 3 dimensional polishing machine was developed in order to polish complicated - shaped inner surfaces of molds. The performance of developed machine was investigated by measuring the roughness of polished surface using new polishing tool.

  • PDF

공작기계 기본설계를 위한 지능형 설계시스템 개발 (Development of Intelligent Design System for Embodiment Design of Machine Tools(I))

  • 차주헌;박면웅;박지형;김종호
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2134-2145
    • /
    • 1997
  • We present a framework of an intelligent design system for embodiment design of machine tools which can support efficiently and systematically the machine design by utilizing design knowledge such as objects(part), know-how, public, evaluation, and procedures. The design knowledge of machining center has been accumulated through interview with design experts of machine tool companies. The processes of embodiment design of machining center are established and represented by the IDEF0 model from the field surveys. We also introduce a hybrid knowledge representation so that the system can easily deal with various and complicated design knowledge. The intelligent design system is being developed on the basis of object-oriented programming, and all parts of a design object, machining center, are also classified by the object-oriented modeling.

지능형 공작기계 설계 지원 시스템 개발 (Development of Intellingent Design Support System for Machine Tools)

  • 차주헌;김종호;박면웅;박지형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1022-1027
    • /
    • 1995
  • We present a framework of an intelligent design support system for embodiment design of machine tools which can support efficiently and systematically the machine design by utilizing design knowledge such as objects(part), know-how, public, evaluation, and procedures. The design knowledge of machining center has been accumulated through interview with design experts of machine tool companies. The processes of embodiment design of machining center are established. We also introduce a hybrid knowledge representation so that the systm can easily deal with various and complicated design knowledge. The intelligent design system is being developed on the basis of object-oriented programming, and all parts of a design object, machining center, are also classified by the object-oriented modeling. For the demonstration of effectiveness of the suggested system, a structural design system for machine tools is implemented.

  • PDF

가공정도 향상을 위한 Milling Machine의 안정화 설계 (Design of a Stabilized Milling Machine for the Improved Precision Machining)

  • 노승훈;이민수;박근우;강희태;이종형;양성현
    • 한국산업융합학회 논문집
    • /
    • 제14권2호
    • /
    • pp.45-52
    • /
    • 2011
  • Since the most exclusive machines of the modern industries which require the nano precision rates are evolved from the machine tools, the design of the stable machine tool structure is very critical. Exclusive machines for the modern industries such as semiconductor, solar cell and LED have surface machining processes which are similar to the face cutting and grinding of conventional machine tools. This study was initiated to stabilize a milling machine structure and further to help design those exclusive machines which have similar machining mechanisms. The vibrations inherent to the machine tool structures hurt the precision machining as well as damage the longevity of the structures. There have been numerous researches in order to suppress the vibrations of machine tool structures using the extra modules such as actuators and dampers. In this paper, the dynamic properties are analyzed to obtain the natural frequencies and mode shapes of a machine tool structure which reflect the main reasons of the biggest vibrations under the given operating conditions. And the feasibility of improving the stability of the structure without using any additional apparatus has been investigated with minor design changes. The result of the study shows that simple changes based on proper system identification can considerably improve the stability of the machine tool structure.