Journal of information and communication convergence engineering
/
v.15
no.2
/
pp.85-90
/
2017
Expert systems for health diagnosis are only for medical experts who have deep knowledge in the field but we need a self-checking pre-diagnosis system for preventive public health monitoring. Korea Traditional Medicine is popular in use among Korean public but there exist few available health information systems on the internet. A computerized self-checking diagnosis system is proposed to reduce the social cost by monitoring health status with simple symptom checking procedures especially for Korea Traditional Medicine users. Based on the national reports for disease/symptoms of Korea Traditional Medicine, we build a reliable database and devise an intelligent inference engine using fuzzy c-means clustering. The implemented system gives five most probable diseases a user might have with respect to symptoms given by the user. Inference results are verified by Korea Traditional Medicine doctors as sufficiently accurate and easy to use.
Journal of the Korea Society of Computer and Information
/
v.19
no.5
/
pp.11-18
/
2014
In this paper, we propose a self-diagnosis system that is based on the ART2 algorithm in order to extract more detailed disease information by fuzzy reasoning method especially when the boundary of perceived symptoms are not clearly classified into disease categories. With that modification from previous version of the self health pre-diagnosis system, the proposed one is verified as more effective by field experts' evaluation as an intelligent assistant tool for public users before they consult with medical experts.
This paper shows an intelligent disease diagnosis system for public. Our system deals with 30 diseases and their typical symptoms selected based on the report from Ministry of Health and Welfare, Korea. Technically, the system uses a modified FCM algorithm for clustering diseases and the input vector consists of the result of user-selected questionnaires. The modified FCM algorithm improves the quality of clusters by applying symmetrically measure based on the fuzzy theory so that the clusters are relatively sensitive to the shape of the pattern distribution. Furthermore, we extract the highest 5 diseases only related to the user-selected questionnaires based on the fuzzy membership function between questionnaires and diseases in order to avoid diagnosing unrelated disease.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.378-382
/
2001
The purpose of this study was to develop an expert system supporting the diagnosis of diffuse interstitial lung disease by high resolution computed tomography. CLIPS(C language integrated production system) with rule-based reasoning was used to develop the system. Development of expert system had three stages knowledge acquisition, knowledge representation, and reasoning. Knowledge was obtained and integrated, from tables and figure legends of a representative textbook in the domain of this expert system, High-Resolution CT of the Lung, by Webb WR, Mueller NL, and Naidich DP. The acquired knowledge was analyzed to form a knowledge base. Overlapping knowledge was eliminated, similar pieces of knowledge were combined and professional terms were defined. The most important knowledge of findings was then selected for each disease. After groupings of combined findings were made, disease groups were analyzed sequentially to determine final diagnoses. The system was based upon the input of 69 diseases, 185 findings, 73 conditions, 387 status, and 62 rules. The system was set up to determine the diagnoses of diseases from the combination of findings using forward reasoning. In an empirical trial, the system was applied to support the diagnosis of 40 cases of diffuse interstitial lung diseases. The performance of two doctors with support of the system was compared to that of another two doctors without support of the system. The two doctors with the support of the system made more accurate diagnoses than the doctors without the support of the system. The system is believed to be useful for the diagnosis of rare diseases and for cases with many possible differential diagnoses. In conclusion, an expert system supporting the high resolution computed tomographic diagnosis of diffuse interstitial lung disease was developed and the system is thought to be useful for medical practice.
Lu Changhua;Wang Lifang;Nong, Hu-Yi;Wang Qiming;Lu Qingwen
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.508-510
/
2001
Adopting the method of user weighting fuzzy mathematics, the author accomplished the subject title “Study on Expert System of Chicken\`s Common Diseases Diagnostics”, which could properly diagnose 30 kinds of chicken\`s common diseases and the accordance rate reached 80% verified through 244 disease cases. On the basis of the accomplishment, the multimedia technology was adopted further more to establish a system, which integrated with the input, display, query, and processing of sound, picture and text etc., combined with the previous chicken disease diagnostic expert system, make the output information of computer more rich and comprehensive, and the accordance rate of disease diagnosis could be improved. The system consists of database, knowledge base, graphics and picture base. This system is easy to operate and interface of which is vivid and intuitive. It could output diagnostic result and prescribe rapidly, so that, such a system is not only adapted to large, medium chicken farm but also to grass-roots veterinary station for developing health care and disease diagnosing. It is sure that the system could have side prospect of application.
International Journal of Computer Science & Network Security
/
v.23
no.5
/
pp.148-162
/
2023
Classification systems can significantly assist the medical sector by allowing for the precise and quick diagnosis of diseases. As a result, both doctors and patients will save time. A possible way for identifying risk variables is to use machine learning algorithms. Non-surgical technologies, such as machine learning, are trustworthy and effective in categorizing healthy and heart-disease patients, and they save time and effort. The goal of this study is to create a medical intelligent decision support system based on machine learning for the diagnosis of heart disease. We have used a mixed feature creation (MFC) technique to generate new features from the UCI Cleveland Cardiology dataset. We select the most suitable features by using Least Absolute Shrinkage and Selection Operator (LASSO), Recursive Feature Elimination with Random Forest feature selection (RFE-RF) and the best features of both LASSO RFE-RF (BLR) techniques. Cross-validated and grid-search methods are used to optimize the parameters of the estimator used in applying these algorithms. and classifier performance assessment metrics including classification accuracy, specificity, sensitivity, precision, and F1-Score, of each classification model, along with execution time and RMSE the results are presented independently for comparison. Our proposed work finds the best potential outcome across all available prediction models and improves the system's performance, allowing physicians to diagnose heart patients more accurately.
Journal of the Korea Society of Computer and Information
/
v.15
no.1
/
pp.23-30
/
2010
With the advancement of information technology and increasing diversity in medical field, there are ongoing researches on ontology based intelligent medical system in Oriental medicine field. Intelligent diagnostic support system uses ontology to give a structure to complex medical knowledge and personal medical history so that we can make diagnosis more scientific, and provide better medical services. In this paper, we suggest an ontology that structuralize three knowledge types basic medical data, clinical trial data, and personal health information, which can be used as important information for individually tailored diagnosis. Especially in Oriental medicine diagnosis, both patient's symptoms of illness and physical constitution play a great role; it can lead to distinct diagnosis depending on their combination. Thus, it is much needed to have a diagnostic support system that uses personal health history and physical constitution along with basic medical data and clinical trial data in the field. In this paper, we implemented an Oriental medicine diagnostic support system that provides individualized diagnosis service to each patient by building an ontology on Oriental medicine focused on individual physical constitution and disease information.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.12
no.2
/
pp.243-249
/
2012
These days it is becoming more and more common to find electronic medical screening systems installed in Oriental hospitals and clinics. This is a relatively new development for the practice of traditional Oriental medicine. Specifically, Pulse detection machines are being utilized in order to help determine a patient's disease scientifically. However, identifying and diagnosing the specific disease correctly for each patient is still very difficult in Oriental medicine. The intention of this paper is to propose a solution which uses two separate Electronic systems working together to produce a better likelihood of finding the correct diagnosis for each patient. It is proposed that an EMR intelligent electronic chart system be developed and employed, which would utilize both Pulse wave system and a tongue detection system at the same time, in order to solve the problem. Computer simulation results have proven to show that EMR systems used in hospitals and clinics are more efficient and yield a more accurate diagnosis than traditional methods.
This paper describes the construction of knowledge data retrieval management system based on medical image CT. The developed system is aimed to improve the efficiency of the hospital by reading the medical images using the intelligent retrieval technology and diagnosing the patient 's disease name. In this study, the medical image DICOM file of PACS is read, the image is processed, and feature values are extracted and stored in the database. We have implemented a system that retrieves similarity by comparing new CT images required for medical treatment with the feature values of other CTs stored in the database. After converting 100 CT dicom provided for academic research into JPEG files, Code Book Library was constructed using SIFT, CS-LBP and K-Mean Clustering algorithms. Through the database optimization, the similarity of the new CT image to the existing data is searched and the result is confirmed, so that it can be utilized for the diagnosis and diagnosis of the patient.
In the rapidly changing high-tech society, lots of people are exposed to various kinds of stress and disease with an effort to adopt to the society, in spite of the benefits and abundance created by various technologies. Therefore, the health of modem people is our main concern and essential subject. The researcher would like to suggest systematical and intelligent medical diagnosis expert system that can give the effect same as the help from real experts with health check helper and scientific and objective knowledge that fit to the age and environment of changing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.