• Title/Summary/Keyword: Intelligent Devices

Search Result 786, Processing Time 0.035 seconds

PEIS-Ecology in multi-robot environments

  • Seo, Beom-Su;Roh, Myung-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.765-766
    • /
    • 2006
  • The ecology of Physically Embedded Intelligent Systems (PEIS) is a new multi robotic framework conceived by integrating insights from the fields of autonomous robotics and ambient intelligence. A PEIS-Ecology is a network of intelligent robotic devices that can provide the user with assistance, information, communication, and entertainment services. In this paper we introduce the concept of PEIS Ecology, and illustrate a concrete realization of a PEIS-Ecology.

  • PDF

Mobile Robot Control for Human Following in Intelligent Space

  • Kazuyuki Morioka;Lee, Joo-Ho;Zhimin Lin;Hideki Hashimoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.1-25
    • /
    • 2001
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. Thus, it is desirable for a mobile robot to carry out human-affnitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible.

  • PDF

Networked Intelligent Motor-Control Systems Using LonWorks Fieldbus

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.365-370
    • /
    • 2004
  • The integration of intelligent devices, devices-level networks, and software into motor control systems can deliver improved diagnostics, fast warnings for increased system reliability, design flexibility, and simplified wiring. Remote access to motor-control information also affords an opportunity for reduced exposure to hazardous voltage and improved personnel safety during startup and trouble-shooting. This paper presents LonWorks fieldbus networked intelligent induction control system architecture. Experimental bed system with two inverter motor driving system for controlling 1.5kW induction motor is configured for LonWorks networked intelligent motor control. In recent years, MCCs have evolved to include component technologies, such as variable-speed drives, solid-state starters, and electronic overload relays. Integration was accomplished through hardwiring to a programmable logic controller (PLC) or distributed control system (DCS). Devicelevel communication networks brought new possibilities for advanced monitoring, control and diagnostics. This LonWorks network offered the opportunity for greatly simplified wiring, eliminating the bundles of control interwiring and corresponding complex interwiring diagrams. An intelligent MCC connected in device level control network proves users with significant new information for preventing or minimizing downtime. This information includes warnings of abnormal operation, identification of trip causes, automated logging of events, and electronic documentation. In order to show the application of the multi-motors control system, the prototype control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using LonWorks network.

  • PDF

A Context-Aware Engine for Mobile Platforms (모바일 플랫폼 상황이해엔진)

  • Lee Sun A;Lee Keon Myung;Lee Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.300-305
    • /
    • 2005
  • Context-aware intelligent services are essential in ubiquitous computing and intelligent robots environments, which make decisions on which services to start with the consideration of surrounding contexts. In the ubiquitous and intelligent environments, context-aware service engines should be light-weighted due to the resource restrictions on the devices. This paper presents a context-aware service engine which is designed for light-weighted devices. The context-aware service engine has been designed with special attention to improve the execution speed and to minimize the memory requirement.

Framework Design of Pervasive Computing System for Inter Space Interactions between Private and Public Smart Spaces

  • Lim, Shin-Young;Chung, Lawrence;Helal, Sumi;Yang, Hen-I
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.198-205
    • /
    • 2009
  • In this paper, design of framework architecture of pervasive computing system providing seamless inter space interactions between private and public smart spaces is presented. The seamless inter space interaction issues are related to establishing user's service environment by allocating relevant resources in a new location where there are no prior settings for the user or where there are current users already being served in the new location. In the realm of pervasive computing, we can have different types of smart spaces, offering proactive and intelligent services, which are islands of smart spaces independent from each other. As users move about, they will have to roam from private smart space to public smart space and vice versa. When they enter a new island of smart space, they will have to setup their devices and service manually to get the same or different services they had at the previous location. Users might be living in a non-pervasive computing environment because this manual operation is inappropriate to its generic features of proactive and intelligent services of pervasive computing. The framework architecture will provide seamless inter space interactions initiated by changes in users' location to acquire negotiations of resources for new and current residents regarding service provision with limited available networked devices.

Design of Bi-directional RDM-DMX512 Converter for LED Lighting Control

  • Hung, Nguyen Manh;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.106-115
    • /
    • 2013
  • LED lighting control system using unidirectional DMX512 (digital multiplex with 512 pieces of information)) protocol has been the most popular. Nowadays, the user's consumption has been upgrading to the more intelligent system but the upgrading process does not affect the existing infrastructure. There were many researches use the additional communication for the feedback communication way such as WiFi, Controller Area Network (CAN), Power Line Communication (PLC), etc but all researches had inherent disadvantages that created the independent feedback with the existing DMX512 system. Our paper represents the novel method that uses the remote device management (RDM) protocol to associate the additional feedback with existent DMX512 infrastructure in the one system. The data in DMX512 frame sending to the DMX512 client is split and repacked to become the RDM packet. This RDM packet is transferred to the RDM monitor console and the response RDM packet is converted to the DMX512 frame for control DMX512 client devices. This is the closed loop control model which uses the bidirectional convertibility between RDM packet and DMX512 frame. The proposed method not only upgrades the feedback control function for the old DMX512 system without changing the existent infrastructure, but also solves compatible problems between new RDM devices and old DMX512 devices and gives the low cost solution for extending DMX512 universe.

Home Network Electrical Appliance Control With The UPnP Expansion

  • Cho, Kyung-Hee;Lee, Sung-Joo;Chung, Hyun-Sook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.127-131
    • /
    • 2007
  • The control of electrical appliances residing in the home network can be accomplished via Internet with the UPnP expansion without modifying an existing UPnP. In this paper, we propose the Internet Gateway that consists of an UPnP IGD(Internet Gateway Device) DCP(Device Control Protocol) and an UPnP Bridge as a system to control electrical appliances of home network. UPnP IGD DCP is to enable the configurable initiation and sharing of Internet connections as well as assuring advanced connection-management features and management of host configuration service. It also supports transparent Internet access by non-UPnP-certified devices. UPnP Bridge searches for local home network devices by sending control messages, while control point of UPnP Bridge looks up devices of interest on the Internet, subsequently furnishing the inter-networking controlling among devices which belong to different home network systems. With our approach, devices on one home network can control home electrical appliances on the other home network via Internet through IGD DCP with control commands of UPnP.

Analysis of Interference between UWB and ITS

  • Park, Se-Ho;Kim, Eun-Cheol;Kim, Jin-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.202-210
    • /
    • 2009
  • In this paper, we have analyzed the effect of interference between ultra-wideband(UWB) and intelligent transport systems(ITS). The maximum possible UWB emission power and minimum possible distance between UWB devices and ITS are found. In order to analyze the interference, we employ the Monte-Carlo(MC) method. We consider six situations, which are indoor office line-of-sight(LOS), indoor office non-line-of-sight(NLOS), indoor residential LOS, indoor residential NLOS, outdoor rural LOS, and outdoor rural NLOS environments. From the simulation results, it is confirmed that coexistence between UWB and ITS devices can be realized in accordance with the emission mask of 19.3 dB for indoor application or 19.3 dB for an image system. And in the outdoors, coexistence between UWB and ITS devices can be realized if the emission mask is at least 1.6 dB for vehicles' radar systems.

Intelligent Agent for Customizable Shopping Mall using Fuzzy Theory (퍼지 이론을 이용한 맞춤형 쇼핑몰을 위한 지능형 에이전트)

  • 이승환;민병기;최동운
    • Journal of Internet Computing and Services
    • /
    • v.2 no.1
    • /
    • pp.63-75
    • /
    • 2001
  • With the popularization of internet, its application fields are spreading out every industry parts, especially there are great change in marketing areas by the internet. One of them is shopping mall. Assembly PC of old method being sale shopping mall is not consider in compatibility of each devices, because of using the assembling method of it. In this paper, in order to their has not specific knowledge on computer and consider of a compatibility to each devices, our implemented shopping mall that on the provided convenience by using the on-line customer, M implemented intelligent agent can advise compatibility of each devices using Fuzzy value.

  • PDF

On-road Vehicle Tracking using Laser Scanner with Multiple Hypothesis Assumption

  • Ryu, Kyung-Jin;Park, Seong-Keun;Hwang, Jae-Pil;Kim, Eun-Tai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • Active safety vehicle devices are getting more attention recently. To prevent traffic accidents, the environment in front and even around the vehicle must be checked and monitored. In the present applications, mainly camera and radar based systems are used as sensing devices. Laser scanner, one of the sensing devices, has the advantage of obtaining accurate measurement of the distance and the geometric information about the objects in the field of view of the laser scanner. However, there is a problem that detecting object occluded by a foreground one is difficult. In this paper, criterions are proposed to manage this problem. Simulation is conducted by vehicle mounted the laser scanner and multiple-hypothesis algorithm tracks the candidate objects. We compare the running times as multi-hypothesis algorithm parameter varies.